Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Simpson, L.J. Dameron, A. Christensen, S. Gennett, T. Reese, M. Berry, J. Perkins, J. Ginley, D. |
| Copyright Year | 2010 |
| Description | Author affiliation: National Renewable Energy Laboratory, Golden, CO, United States (Simpson, L.J.; Dameron, A.; Christensen, S.; Gennett, T.; Reese, M.; Berry, J.; Perkins, J.; Ginley, D.) |
| Abstract | NREL has leveraged its expertise in multifunctional thin-film technologies to develop enabling and inexpensive transparent conductive coatings for energy applications (Figure 1). The design of these films provides an unique complement of performance characteristics including enhanced durability, flexibility, and impermeable and self-healing barriers to environmental contaminants (e.g., water and oxygen). This is especially needed for environmentally sensitive thin-film and organic photovoltaic technologies. In general, the majority of transparent conducting films used in industry today involves 0.5 to 2 micrometers of relatively expensive indium tin oxide (ITO) and/or doped zinc oxide coatings that have 60%–80% transmission in the visible region and resistances from 10 to 500 ohms/sq. However, to reduce materials/processing costs and maintain a high level of conductivity/transparency while enhancing barrier and durability performance, we have developed nanoscale film composites of ultra-thin TCOs (focusing on lower-cost materials that will include doped ZnO) and atomic layer-deposited materials. These composite structures will be a disruptive technology providing the transparency, conductivity, structural integrity (adhesion and fracture toughness), and impermeability needed for the most demanding applications, with processing that is scalable and adaptable for inexpensive, low-temperature manufacturing. Specifically, NREL has demonstrated transparent conducting films with the potential to reduce water/oxygen vapor transport rates by more than five orders of magnitude compared to typical organic materials. In addition, these films have resistances of ∼5 ohms/sq. and transmissions over 90%. These transparent conducting barrier films also have significantly enhanced cyclic loading durability and strain tolerance. Finally, despite these substantial improvements, NREL's transparent conducting barrier layers can be integrated with PV devices for two orders of magnitude less cost than ITO. NREL's ultimate goal is to improve the technology and provide water vapor transport rates (WVTRs) lower than $10^{−6}$ $g/m^{2}-day—the$ barrier protection needed to enable organic, some thin-film, and 3rd generation photovoltaics. |
| Starting Page | 001052 |
| Ending Page | 001056 |
| File Size | 1011131 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781424458905 |
| ISSN | 01608371 |
| e-ISBN | 9781424458929 |
| DOI | 10.1109/PVSC.2010.5614664 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-06-20 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Films Metals Conductivity Coatings Ceramics Indium tin oxide |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Control and Systems Engineering Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|