Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Dahmani, C. Gotz, S. Weyh, T. Renner, R. Rosenecker, M. Rudolph, C. |
| Copyright Year | 2009 |
| Description | Author affiliation: Ludwig-Maximilians-Universität, Department of Pediatrics, Munich, Germany (Renner, R.; Rosenecker, M.; Rudolph, C.) || Technische Universität München, Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Munich, Germany (Dahmani, C.; Gotz, S.; Weyh, T.) |
| Abstract | Lung cancer kills per year 1.3 million people worldwide. It is the most fatal cancer type as far as men are concerned and the second deadliest for women. One of the recent technologies to treat carcinomas in the lungs consists in delivering drugs through the pulmonary pathways directly to the tumor cells over actively loaded superparamagnetic nanoparticles that are encapsulated in aerosols and guided by external magnetic fields. However, first implementations of this technique assumed a continuous application of the magnetic field all through the inspiration and expiration phases of the artificial respiratory act that supplies the patient. We observed that applying the field this way forced the magnetic aerosols to sediment at regions far from the target, mainly in the trachea and main bronchioles, because of the force inducing magnetic field gradients that are present over the whole field application area. We developed an approach to avoid this effect by punctually generating the aerosol cloud exactly at the beginning of the inspiration phase, which would propel the particles to the deepest parts of the lung and therefore to the targeted cells as well, and by synchronizing the magnetic field activation with the breathing process. Our developed system analyzes the relevant respiration parameters such as pressure and flow and detects the end of the inspiration phase to trigger the magnet exactly at that point in time, when particles have reached the deepest alveoli, including the targeted zones, and do not experience forces due to the streaming any more. The magnetic field is then held on during the expiration phase to assure the retention of the aerosols at the targeted sites, which increases the efficiency and focality of the treatment. This way, only target cells are subjected to the deposition of the drug carrying aerosols, while the other healthy regions of the lungs remain unaltered by side effects. |
| Starting Page | 5440 |
| Ending Page | 5443 |
| File Size | 1716685 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424432967 |
| ISSN | 1557170X |
| DOI | 10.1109/IEMBS.2009.5332476 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-09-03 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Drugs Lungs Aerosols Magnetic fields Cancer Pharmaceutical technology Tumors Nanoparticles Sediments Clouds breath triggering magnetic drug targeting superparamagnetic nanoparticles aerosols deposition |
| Content Type | Text |
| Resource Type | Article |
| Subject | Signal Processing Biomedical Engineering Health Informatics Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|