Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Grassi, R. Gnudi, A. Gnani, E. Reggiani, S. Baccarani, G. |
| Copyright Year | 2008 |
| Description | Author affiliation: ARCES & DEIS, Univ. of Bologna, Bologna, Italy (Grassi, R.; Gnudi, A.; Gnani, E.; Reggiani, S.; Baccarani, G.) |
| Abstract | In this paper, the opportunities offered by mono-atomic layers of graphene for the fabrication of high-performance nanoribbon FETs are examined. Starting from the description of some fundamental material properties, such as the single-particle Hamiltonian in graphene and its analogy with massless Dirac fermions in quantum electrodynamics, we proceed with the examination of the GNR band structure and, most notably, the inverse relationship of the bandgap with the GNR width. The huge graphene carrier mobility, made possible by both the small effective mass and the weak electron-phonon interaction even at room temperature, makes it conceivable to work out high-performance GNR-FETs, virtually not affected by short-channel effects and operating under ballistic conditions at low supply voltages. Experimental results obtained from graphene-based device structures, however, exhibit the limitations of narrow-bandgap semiconductors, as well as serious fabrication and integration problems within a CMOS process. Simulations of narrow GNR-FETs confirm the high potential of these devices, but highlight at the same time leakage problems due to various band-to-band and source-to-drain tunneling mechanisms which occur at low and negative gate voltages. These effects can possibly be contained by a careful device optimization and/or devising novel FET structures. |
| Starting Page | 365 |
| Ending Page | 368 |
| File Size | 4564259 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424421855 |
| DOI | 10.1109/ICSICT.2008.4734555 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-10-20 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | FETs Logic Fabrication Material properties Electrodynamics Photonic band gap Effective mass Charge carrier processes Temperature Low voltage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|