Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Movva, S. Bezuk, S. Bchir, O. Shah, M. Joshi, M. Pendse, R. Ouyang, E. Kim, Y.C. Park, S.W. Lee, H.T. Kim, S.S. Bae, H.I. Na, G.C. Lee, K. |
| Copyright Year | 2011 |
| Description | Author affiliation: STATS ChipPAC Inc., Fremont, CA (Joshi, M.; Pendse, R.; Ouyang, E.; Kim, Y.C.; Park, S.W.; Lee, H.T.; Kim, S.S.; Bae, H.I.; Na, G.C.; Lee, K.) || QUALCOMM Inc., San Diego, CA (Movva, S.; Bezuk, S.; Bchir, O.; Shah, M.) |
| Abstract | An innovative packaging solution — ‘Cu-column on BOL’ (CuBOL) is developed that dramatically reduces flip chip package cost and offers superior product reliability, thus posing an important flip chip package solution in mobile product applications. The CuBOL technology, utilizing the fcCuBE™ offering by STATS ChipPAC, entails proprietary changes in the bump interconnect structure using Cu-column bump attached to a narrow trace or bond-on-lead (BOL) on substrate without any solder resist confinement (open SR) in the peripheral I/O region of the die. This enables improved routing efficiency on the substrate top layer thus allowing conversion of a flip chip substrate from original 4L to 2L without compromising functionality. The cost of the flip chip package is lowered by means of reduced substrate layer count, removal of solder on pad (SOP) and solder mask and relaxed design rules. When combined with high density substrate strip design and molded underfill (MUF), this process further lowers the manufacturing cost. Use of Cu-column bump with Pb-free solder cap used in CuBOL technology helps achieve a ‘Green’ package solution, which is complimented by improved package reliability benefits achieved by a remarkable reduction of package stress due to the resulting interconnect structure. The CuBOL technology has also been proven to protect the extreme or ultra low K (ELK/ULK) die-electric against cracking or delamination as confirmed with empirical data generated using advanced silicon node test vehicles and further substantiated by thermo-mechanical simulation results. This paper summarizes the multidisciplinary effort undertaken to develop and qualify CuBOL technology using a 7×7 mm fcTFBGA package as test vehicle (TV). Existing substrate design in a 1–2–1 laminate build-up substrate was comfortably routed into 2 layer substrate design, yet maintaining the I/O count, original bump lay-out & ball map and the original bump-to-ball netlist by applying more efficient routing scheme offered by CuBOL technology. TV wafers were bumped using the composite structure of Cu-column with a Pb-free solder cap. Different aspect ratio of Cu-column height to solder cap height were evaluated to find the optimal one to ensure robust joint formation. Flip chip attach process using composite Cu-column bump with narrow BOL pad was studied in detail in terms of impact of design, and process factors on non-wet, solder short and warpage performance. Side by side comparison of original 4L design and CuBOL 2L was conducted in terms of strip and unit warpage finding significant benefits with the latter. Ultimately, extensive reliability testing was conducted on the packaged units assembled using CuBOL technology by subjecting through a battery of JEDEC standard stress tests for example — preconditioning, temperature cycling (TC), high temperature storage(HTS) and un-biased HAST and excellent reliability results with adequate margins were obtained. Subsequent interception of CuBOL technology into advanced silicon node TVs showed improved package reliability with ELK stress reduction. This finding was further substantiated using thermo-mechanical simulation studies comparing CuBOL interconnect structure with control leg, thus proving CuBOL to be a superior interconnect structure for ELK protection. Finally, electrical performance assessment studies done to ensure product functionality parity between CuBOL design with reduced layer count with the original product design is also presented in this paper. |
| Starting Page | 601 |
| Ending Page | 607 |
| File Size | 1381939 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781612844978 |
| ISSN | 05695503 |
| e-ISBN | 9781612844985 |
| e-ISBN | 9781612844961 |
| DOI | 10.1109/ECTC.2011.5898574 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-05-31 |
| Publisher Place | Florida, USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Substrates TV Flip chip Strontium Reliability Assembly Routing |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|