Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Tu Anh Tran Chu-Chung Lee Mathew, V. Higgins, L. |
| Copyright Year | 2011 |
| Description | Author affiliation: Freescale Semicond. Inc., Austin, TX, USA (Tu Anh Tran; Chu-Chung Lee; Mathew, V.; Higgins, L.) |
| Abstract | The gold price has continuously climbing since 2000 and is currently recorded at historical high at above USD1350 per ounce in October 2010 as compared to USD1000 per ounce one year ago. Gold wire bonding has been the primary wire interconnecting method used in the semiconductor packaging industry for more than 50 years. Gold wire historically represented about 20-25% of the package cost. With the ever increasing gold price, this ratio now can be as high as 30-35% of the package cost and does not look like there is a relief in sight. Replacing gold wire with copper wire has become a necessity in order to maintain low assembly cost for wire bonded parts. Copper wire has many benefits including low cost, high electrical and thermal conductivities and excellent reliability with aluminum pad metallization. Heavy gauge copper wire has been used in consumer products and semiconductor discrete products for a long time. Many commercial product sectors began thin gauge copper wire in production since 2008. Automotive customers are also forced to look for cheaper interconnecting alternative, such as copper wire as an example. One of the issues in qualifying copper wire for automotive customers with stringent reliability requirements is that no industrial standard has been agreed or published to define copper wire qualification requirements. Presently most companies still apply gold wire reliability requirement to qualify copper wire packages. Many of them extend the gold wire package reliability stress duration for copper wire as a safety factor during the qualification. Our study is aimed for the assembly solution to apply copper wires on low-k-copper wafers with aggressive Freescale Bond Over Active (BOA) rules to meet automotive qualification requirements of Automotive Electronics Council (AEC) grade 1 and grade 0. Two types of bonding surfaces were used in this study, namely the conventional aluminum bond pad and aluminum bond pad remetallized with Nickel / Palladium / Gold Over Pad Metallurgy (OPM). Since Cu-Al and Cu-Au systems are completely different from Au-Al system, the difficulty in applying the same Au wire standards to copper wire parts will be discussed. A new approach to defining the pass/ fail criteria for copper wire parts will be proposed in this study. Units assembled with fine gauge copper wire were submitted through extensive stress conditions in order to demonstrate the excellent package reliability performance. |
| Sponsorship | Components, Packaging Manuf. Technol. Soc. |
| Starting Page | 1508 |
| Ending Page | 1515 |
| File Size | 3115325 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781612844978 |
| ISSN | 05695503 |
| e-ISBN | 9781612844985 |
| e-ISBN | 9781612844961 |
| DOI | 10.1109/ECTC.2011.5898710 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-05-31 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Wires Copper Gold Nickel Bonding Aluminum Reliability |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|