Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Chanchani, R. Nordquist, C.D. Olsson, R.H. Peterson, T. Shul, R. Ahlers, C. Plut, T.A. Patrizi, G.A. |
| Copyright Year | 2011 |
| Description | Author affiliation: Sandia National Labs, P.O. Box 5800, Albuquerque, NM 87185 (Chanchani, R.; Nordquist, C.D.; Olsson, R.H.; Peterson, T.; Shul, R.; Ahlers, C.; Plut, T.A.; Patrizi, G.A.) |
| Abstract | We report a new wafer-level packaging technology for miniature MEMS in a hermetic micro-environment. The unique and new feature of this technology is that it only uses low cost wafer-level processes such as eutectic bonding, Bosch etching and mechanical lapping and thinning steps as compared to more expensive process steps that will be required in other alternative wafer-level technologies involving thru-silicon vias or membrane lids. We have demonstrated this technology by packaging silicon-based AlN microsensors in packages of size 1.3 × 1.3 $mm^{2}$ and 200 micrometer thick. Our initial cost analysis has shown that when mass produced with high yields, this device will cost $0.10 to $0.90. The technology involves first preparing the lid and MEMS wafers separately with the sealring metal stack of Ti/Pt/Au on the MEMS wafers and Ti/Pt/Au/Ge/Au on the lid wafers. On the MEMS wafers, the Signal/Power/Ground interconnections to the wire-bond pads are isolated from the sealring metallization by an insulating AlN layer. Prior to bonding, the lid wafers were Bosch-etched in the wirebond pad area by 120 um and in the center hermetic device cavity area by 20 um. The MEMS and the lid wafers were then aligned and bonded in vacuum or in a nitrogen environment at or above the Au-Ge Eutectic temperature, 363°C. The bonded wafers were then thinned and polished first on the MEMS side and then on the lid side. The MEMS side was thinned to 100 ums with a nearly scratch-free and crack-free surface. The lid side was similarly thinned to 100 ums exposing the wire-bond pads. After thinning, a 100 um thick lid remained over the MEMS features providing a 20 um high hermetic micro-environment. Thinned MEMS/Lid wafer-level assemblies were then sawed into individual devices. These devices can be integrated into the next-level assembly either by wire-bonding or by surface mounting. The wafer-level packaging approach developed in this project demonstrated RF Feedthroughs with <0.3 dB insertion loss and adequate RF performance through 2 GHz. Pressure monitoring Pirani structures built inside the hermetic lids have demonstrated the ability to detect leaks in the package. In our preliminary development experiments, we have demonstrated >50% hermetic yields. |
| Starting Page | 1604 |
| Ending Page | 1609 |
| File Size | 919613 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781612844978 |
| ISSN | 05695503 |
| e-ISBN | 9781612844985 |
| e-ISBN | 9781612844961 |
| DOI | 10.1109/ECTC.2011.5898725 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-05-31 |
| Publisher Place | Florida, USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Micromechanical devices Bonding Cavity resonators Silicon Metals Radio frequency Etching |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|