Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Chheda, B.V. Ramkumar, S.M. Ghaffarian, R. |
Copyright Year | 2010 |
Description | Author affiliation: Jet Propulsion Laboratory California Institute of Technology Pasadena, CA (Ghaffarian, R.) || Center for Electronics Manufacturing and Assembly Rochester Institute of Technology Rochester NY, 14623 (Chheda, B.V.; Ramkumar, S.M.) |
Abstract | A wide array of lead-free alloys is available in the market and distinguishing one over the other is not an easy task. Several factors have to be considered before making a choice. Reliability under both thermal and mechanical conditions is one such factor. This experimental research aims at making a comparison of the different lead-free solder ball alloys for area array and advanced packages, assembled using lead-free solder paste. Package reliability will be compared for No-underfill, Corner-underfill and Full-underfill. Assembly reliability was evaluated by subjecting the assemblies to 30 mechanical drops in the as-assembled(AS) condition and after 200 and 500 thermal shock cycles (TS). The scope of this paper is limited to the performance evaluation for area array packages (UCSP, PBGA676, PBGA1156, PoP, CVBGA). Solder ball alloy for the area array packages include SAC305, SAC405, SAC105 and SnAg. The solder paste used for the assembly is SAC305 with Type 3 solder particle size. Three different PCB surface finishes, electroless nickel immersion gold (ENIG), SnPb hot air solder level (HASL), and immersion silver (ImAg) are used. Different solder ball alloys and surface finish combinations will provide data to compare intermetallic thickness. Assembly reliability was evaluated by subjecting the assemblies to 30 mechanical drops in the as-assembled condition and after 200 and 500 thermal shock cycles. After each drop the components were checked for the continuity of the total daisy chain. The number of drops for the first failure was used in analyzing the performance of the components for various combinations. Since each component had many independent daisy chains, the failure of the individual daisy chains was later used in determining the location of the failure and how it progressed. Test results gathered for no-underfill, corner-underfill and full-underfill assemblies indicate SnAg alloys for the solder balls to be performing better than the SAC305 and SAC405 alloys for PBGA676, irrespective of the PCB pad surface finish. The location on the PCB could have had an influence on these packages. An improvement in drops to failure was also observed for some packages with corner-underfill. But with full-underfill the improvement was observed for all packages. It was also observed that UCSP failed to withstand 500 thermal shock cycles for no-underfill and corner-underfill assemblies. But the package was able to withstand 500 cycles of thermal shock for full-underfill assemblies. Solder joint analysis reveals pad cratering and crack formation to be the root cause for failure. These packages were also cross-sectioned in order to record the changes in intermetallic thickness. This paper will provide a detailed analysis of the findings. |
Starting Page | 935 |
Ending Page | 942 |
File Size | 1078517 |
Page Count | 8 |
File Format | |
ISBN | 9781424464104 |
ISSN | 05695503 |
e-ISBN | 9781424464128 |
e-ISBN | 9781424464111 |
DOI | 10.1109/ECTC.2010.5490673 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2010-06-01 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Electric shock Testing Environmentally friendly manufacturing techniques Assembly Packaging Lead Surface finishing Intermetallic Failure analysis Thermal factors |
Content Type | Text |
Resource Type | Article |
Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|