Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Siow Ling Ho Jiyin Yu Tay, A.A.O. |
| Copyright Year | 2010 |
| Description | Author affiliation: Nano/Microsystems Integration Laboratory National University of Singapore Department of Mechanical Engineering (Siow Ling Ho; Jiyin Yu; Tay, A.A.O.) |
| Abstract | Interfacial delamination between the lead frame pad and the encapsulant can be a concern as the delamination at this interface is the precursor to Type I popcorn cracking. Previous analyses have shown that when the crack tip of a delamination at the pad/encapsulant interface approaches the edge of the die (albeit separated by the lead frame), the crack driving force increases significantly. Such increase may be attributed to the increase of the crack length or to the nearness of the edge of the die, Based on current literature, it is not clear as to which is the dominant cause. The impact of the edge of the die on the delamination at the pad/encapsulant interface can be significant and this issue is addressed in the current work. The effect of the die attach thickness and Young's Modulus is also investigated. Existing literature often focus on the propagation of one crack which originates from the corner of the interface and this is justified by the presence of high stress concentration at the corner of the interface. However, in some cases, it is possible for more than one crack to exist at the interface. When this happens, it is likely that the cracks will interact with one another, causing the crack-tip driving forces to be affected by the presence of other cracks. Such interactions between multiple cracks is another subject of study in this paper. In the current study, the vehicle of study is a plastic quad flat pack (PQFP) and the interface of interest is the pad/encapsulant interface. Finite element models are constructed and the energy release rate (ERR) of the crack tips calculated using the virtual crack closure method (VCCM) and J-integral. Since the fracture toughness of the interface is dependent on mode mixity, the mode mixities of the crack tips are also calculated. In the study on the effect of the die-attach thickness, it is found that as the thickness of the die attach increases, the peak ERR at the vicinity of the die edge and the ERR of short cracks decreases. The peak ERR observed at the vicinity of the die pad ceases to exist in the presence of a compliant die attach. As for the mode mixities, they remain relatively constant with the change in die attach thickness and Young's modulus. A thick die attach appears to be favorable for mitigation of delamination at the pad/encapsulant interface. In the study on the effect of the die edge, the ERR was computed for a single delamination of length 200 μm located at various locations along the interface to the left and right of the edge of the die. As the location of the delamination is shifted further away from the edge of the pad, the ERR at both (left and right) tips of the crack decreases. No significant increase in ERR is found for crack tips near the vicinity of the die edge. The study on multiple delaminations comprises cases in which, two initial delaminations (which are named crack #1 and crack #2) are assumed to be present in the interface. Crack #1 is fixed at the corner of the pad while The position of crack #2 is varied. The influence of crack #1 on crack #2 is more than the influence of crack #2 on crack #1 as the ERR of crack #1 exhibits a smaller increment when compared to the increase in the ERR of the crack tips of crack #2. Crack#1 exhibits the highest ERR. The results suggests that although the edge of the die does have some effect on delaminations located near it, the delamination located at the edge of the pad will always have the highest ERR. |
| Starting Page | 121 |
| Ending Page | 127 |
| File Size | 713910 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781424464104 |
| ISSN | 05695503 |
| e-ISBN | 9781424464128 |
| e-ISBN | 9781424464111 |
| DOI | 10.1109/ECTC.2010.5490890 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-06-01 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Delamination Microassembly Electronic packaging thermal management Integrated circuit packaging Electronics packaging Thermal stresses Finite element methods Thermal expansion Thermal loading Integrated circuit modeling |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|