Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Lingbo Zhu Kyoung-Sik Moon Bertram, B. Hess, D.W. Wong, C.P. |
| Copyright Year | 2007 |
| Description | Author affiliation: Georgia Inst. of Technol., Atlanta (Lingbo Zhu) |
| Abstract | As integrated circuit (IC) performance increases, many technical challenges appear in the areas of current-carrying capacity, thermal management, I/O density, and thermal-mechanical reliability. To address these problems, the use of aligned carbon nanotubes (CNTs) has been proposed in IC packaging as electrical interconnects and thermal interface materials. For electronic device and packaging applications, chemical vapor deposition (CVD) methods are particularly attractive due to characteristic CNT growth features such as selective spatial growth, large area deposition capability and aligned CNT growth. However, the CVD technique suffers from several drawbacks. One of the main challenges for applying CNTs to the circuitry is the high growth temperature (>600degC). Such temperatures are incompatible with microelectronic processes. To fabricate microelectronics devices that incorporate CNT blocks, the CNTs should be selectively positioned and interconnected to other materials such as metal electrodes or bonding pads. However, the adhesion between CNTs and the substrates is usually very poor, which will result in long term reliability issues and high contact resistance. To overcome these disadvantages, we have successfully demonstrated a methodology that we term "CNT transfer technology". The distinctive CNT-transfer-technology features are separation of CNT growth and CNT device assembly at solder reflow temperature. In this paper, we combined our expertise in growth of well-aligned open-ended CNT bundles with the CNT transfer process to assemble CNT bundles for fine-pitch interconnects applications. The open-ended multi-walled CNT arrays could carry higher current density than close-ended CNTs, since the internal walls can participate in the electrical transport. We for the first time developed an in-situ process to grow well-aligned CNT bundles by water-assistant selective etching. The process is very efficient, with CNT growth rate of 80 mum/min. To demonstrate the feasibility of transfer process to assemble the fine-pitch CNT bundles, the CNT bundles with diameter, aspect-ratio and pitch of 25 mum, 4, and 80 mum, respectively, were assembled on the copper substrates. The measured resistivity of the long CNTs is ~2.3times $10^{-4}$ Omega-cm. The CNT-solder alloy interfaces were analyzed by the SEM. The results indicated that molten SnPb solder form strong mechanical bonding with CNTs. Overall, the advantages of CNT transfer technology are : low process temperature, improved adhesion and the feasibility of transferring CNT bundles to different substrates for fine-pitch interconnect applications. |
| Starting Page | 1981 |
| Ending Page | 1985 |
| File Size | 2514260 |
| Page Count | 5 |
| File Format | |
| ISBN | 1424409845 |
| ISSN | 05695503 |
| DOI | 10.1109/ECTC.2007.374073 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-05-29 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Assembly Carbon nanotubes Integrated circuit interconnections Electronic packaging thermal management Temperature Thermal management of electronics Microelectronics Bonding Adhesives Thermal management |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|