Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Xinyan Zhao Tao Dong |
Copyright Year | 2013 |
Description | Author affiliation: Dept. of Micro & Nano Syst. Technol. (IMST, Vestfold Univ. Coll., Tonsberg, Norway (Xinyan Zhao; Tao Dong) |
Abstract | The cell-based microfluidic chip was designed and fabricated as a low-cost detector to continuously monitor toxicants in drinking water or human urine samples, which is expected to be an important component of a household health monitoring system in the future. The bioluminescent bacterium, Vibrio Fischeri, was selected to validate the function of device. Water samples and Vibrio fischeri cells were mixed and encapsulated into droplets in air flow, which can guarantee sufficient oxygen supply for cells in droplets. Preliminary tests were performed using copper ion $(Cu^{2+})$ as the model toxicant. The droplet system was measured and analyzed at various flow rates in different observation chambers. Both deionized water and human urine samples were tested in the cell-based device. Interestingly, a strong relation between the R.L.U. (Relative Luminescence Units) in the observation chamber and the minute concentration of toxicant $(Cu^{2+})$ was found using deionized water as solvent, whereas the relation was insignificant using human urine as solvent. This study showed the Vibrio fischeri cell-based device might be reliably employed as an early-warning system for the safety of drinking water. However, Vibrio fischeri is not competent to detect dangerous mThe cell-based microfluidic chip was designed and fabricated as a low-cost detector to continuously monitor toxicants in drinking water or human urine samples, which is expected to be an important component of a household health monitoring system in the future. The bioluminescent bacterium, Vibrio Fischeri, was selected to validate the function of device. Water samples and Vibrio fischeri cells were mixed and encapsulated into droplets in air flow, which can guarantee sufficient oxygen supply for cells in droplets. Preliminary tests were performed using copper ion $(Cu^{2+})$ as the model toxicant. The droplet system was measured and analyzed at various flow rates in different observation chambers. Both deionized water and human urine samples were tested in the cell-based device. Interestingly, a strong relation between the R.L.U. (Relative Luminescence Units) in the observation chamber and the minute concentration of toxicant $(Cu^{2+})$ was found using deionized water as solvent, whereas the relation was insignificant using human urine as solvent. This study showed the Vibrio fischeri cell-based device might be reliably employed as an early-warning system for the safety of drinking water. However, Vibrio fischeri is not competent to detect dangerous materials in a complex biofluid. With the replacement of cell sensors, the microfluidic device might be functional to analyze urine samples in theory.aterials in a complex biofluid. With the replacement of cell sensors, the microfluidic device might be functional to analyze urine samples in theory. |
Starting Page | 2433 |
Ending Page | 2436 |
File Size | 711113 |
Page Count | 4 |
File Format | |
ISBN | 9781457702167 |
ISSN | 1557170X |
DOI | 10.1109/EMBC.2013.6610031 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2013-07-03 |
Publisher Place | Japan |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Monitoring Biosensors Microfluidics Chemicals Chemical sensors Biomedical monitoring |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Biomedical Engineering Health Informatics Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|