Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Harter, S. Dohle, R. Reinhardt, A. Gosler, J. Franke, J. |
Copyright Year | 2012 |
Description | Author affiliation: University of Erlangen-Nuremberg, Institute for Manufacturing Automation and Production Systems, Nordostpark 91, D-90411 Nuremberg, Germany (Harter, S.; Reinhardt, A.; Franke, J.) || Micro Systems Engineering GmbH, Schlegelweg 17, D-95180 Berg/Ofr., Germany (Dohle, R.; Gosler, J.) |
Abstract | The ongoing trend to miniaturized electronics has induced many developments towards size reduction and increasing performance in electronic products. To meet these requirements the involved processes, materials and components in electronics production have to be enhanced for high performance and high reliability. Flip-chip technology is one technology of choice with potential for highest integration. In previous investigations technologies for cost-efficient solder bumping and automated assembly in an industrial environment were evaluated. Wafer level solder sphere transfer and solder sphere jetting were adapted to provide flipchips with solder bump diameters down to 30 μm for flip-chip assembly onto printed circuit boards as well as onto thin film ceramic substrates. The reliability tests done so far showed excellent achievable reliability performance of these ultrafine-pitch assemblies under various test conditions. Since electromigration of flip-chip interconnects is a very important reliability concern, characterization of new interconnect developments needs to be done regarding the electromigration performance in accelerated life tests. For all experiments, specially designed flip-chips with 10 mm by 10 mm by 0.8 mm in size have been used. The silicon die layout provides a pitch of 100 μm with solder bump sizes between 60 μm and 30 μm in diameter. The solder spheres consist of lead-free SnAgCu alloy and are placed on a Ni-P under bump metallization which has been realized in an electroless nickel process. For the electromigration tests within this study, multiple combinations of individual current densities and temperatures were adapted to the respective solder sphere diameters. Online measurements with separate daisy chain connections for each test coupon provide exact lifetime data during the electromigration tests, which are in some cases still in progress. Cross sectioning has been employed for the analysis of thermal diffusion as well as of the impact of electromigration influence on the failure mechanism using optical, SEM and EDX analysis, respectively. Reliability plots will be discussed regarding the electromigration performance for different test conditions applied to the respective test specimen for lifetime estimations. |
Starting Page | 583 |
Ending Page | 589 |
File Size | 2110372 |
Page Count | 7 |
File Format | |
ISBN | 9781467319669 |
ISSN | 05695503 |
e-ISBN | 9781467319652 |
e-ISBN | 9781467319645 |
DOI | 10.1109/ECTC.2012.6248889 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2012-05-29 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Flip chip Ceramics Reliability Substrates Nickel Cathodes |
Content Type | Text |
Resource Type | Article |
Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|