Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Lingbo Zhu Yonghao Xiu Jianwen Xu Hess, D.W. Wong, C.P. |
Copyright Year | 2006 |
Description | Author affiliation: Sch. of Chem. & Biomolecular Eng., Georgia Inst. of Technol., Atlanta, GA (Lingbo Zhu; Yonghao Xiu) |
Abstract | Due to the surface smoothness of micromachined structures, strong adhesion forces between these fabricated structures and the substrate can be developed. The major adhesion mechanisms include capillary forces, hydrogen bonding, electrostatic forces and van der Waals forces. Once contact is made, the magnitude of these forces is in some cases sufficient to deform and pin these structures to the substrate, resulting in device failure. This type of failure is one of the dominant sources of yield loss in MEMS. The basic approaches to prevent stiction are increasing surface roughness and/or lowering solid surface energy by coating with low surface energy materials. Combination of micro- and nano-meter scale roughness can dramatically increase the surface roughness. However, in fabrication process, how to optimally design surface geometry with micro-/nano-meter roughness is still not clear. The objectives of this paper are to experimentally study the wetting and hydrophobicity of water droplets on two-tier rough surfaces for comparison with theoretical analyses, and to optimize the surface geometrical design for fabricating stable superhydrophobic surfaces. Two model systems are fabricated: carbon nanotube arrays on silicon wafers and carbon nanotube arrays on carbon nanotube films, to compare wetting on micro-patterned silicon surfaces with wetting on nano-scale roughness surfaces. All surfaces are coated with 20 nm thick fluorocarbon films to obtain low surface energies and to improve the stability of the superhydrophobic surface, formed by plasma enhanced chemical vapor deposition (PECVD). The results show that the microstructural characteristics must be optimized to achieve stable superhydrophobicity on micro-scale rough surfaces. However, the presence of nano-scale roughness allows a much broader range of surface design criteria, decreases the contact angle hysteresis to less than 1deg and establishes stable and robust superhydrophobicity, although nano-scale roughness could not increase the apparent contact angle significantly if the micro-scale roughness dominates. The results of the research could guide the optimized designs of the surfaces for prevention of microelectromechanical (MEMS) stiction |
File Size | 2047336 |
File Format | |
ISBN | 1424401526 |
ISSN | 05695503 |
DOI | 10.1109/ECTC.2006.1645795 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2006-05-30 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Design optimization Microelectromechanical systems Micromechanical devices Rough surfaces Surface roughness Carbon nanotubes Adhesives Silicon Plasma stability Hydrogen |
Content Type | Text |
Resource Type | Article |
Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|