Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Rahman, A. Shahriar, M.S. Timms, G. Lindley, C. Davie, A.B. Biggins, D. Hellicar, A. Sennersten, C. Smith, G. Coombe, M. |
| Copyright Year | 2015 |
| Description | Author affiliation: Autonomous Syst. Program, CSIRO, Sandy Bay, TAS, Australia (Rahman, A.; Shahriar, M.S.; Timms, G.; Lindley, C.; Davie, A.B.; Biggins, D.; Hellicar, A.; Sennersten, C.; Smith, G.; Coombe, M.) |
| Abstract | This study investigated the applicability of machine learning algorithms to detect the presence of elements in underground mines from rock surface images, which is proposed as a heuristic classification method inspired by the ability of human geologists to make judgments about the location of ore veins by eye. A regression algorithm was investigated to find associations between image features and X-Ray Fluorescence (XRF) signatures indicating elemental content of the surface and near-surface region of the rocks. A set of image processing algorithms was used to extract color distribution, edge orientation statistics, and texture of the rock surfaces. XRF signatures were obtained from the same samples, providing a semi-quantitative measure of element concentration. The process was performed on a set of 20 rock samples. The regression algorithm was then trained to find a mapping between image features and the semi-quantitative element concentrations (corresponding with XRF peaks). Experimental results demonstrate the potential effectiveness of the proposed approach in the context of a specific ore body. |
| Sponsorship | IEEE |
| Starting Page | 1 |
| Ending Page | 4 |
| File Size | 1730099 |
| Page Count | 4 |
| File Format | |
| e-ISBN | 9781479982035 |
| DOI | 10.1109/ICSENS.2015.7370680 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-11-01 |
| Publisher Place | South Korea |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Rocks Image color analysis Imaging Machine learning algorithms Image edge detection Surface texture Histograms mining machine learning XRF signatures image processing regression |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|