Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Xiyun Cheng Qian Wang Lin Tan Guanhua Li Yu Chen Jian Cai |
Copyright Year | 2014 |
Description | Author affiliation: Inst. of Microelectron., Tsinghua Univ., Beijing, China (Xiyun Cheng; Qian Wang; Lin Tan; Yu Chen; Jian Cai) || Shennan Circuit Co., Ltd., Shenzhen, China (Guanhua Li) |
Abstract | With merits like high I/O density, superior electrical and thermal performance, and small form factor, flip chip has become more and more widely used in electronic packages. Although the flip chip packaging process has been fairly improved, the conventional CUF (Capillary Underfill) process is a bottleneck that results in lower productivity and higher cost. MUF (Molded Underfill) process offers an alternative solution with advantages such as simplification of process, reduction of material cost and higher productivity. However, the extremely narrow gap between substrate and die makes it a big challenge to get optimal MUF material set and appropriate process conditions to cope with the serious void trapping issue. Besides, the process-induced warpage is also a problem that affects yield and reliability. In this paper, the MUF process of a flip chip package has been studied using numerical analysis method. The cure-kinetic, rheological and chemical shrinkage properties of MUF compound were measured by DSC (Differential Scanning Calorimeter), DMA (Dynamic Mechanical Analyzer) and universal testing machine, respectively. A global model and a sectional model were developed for MUF injection analysis to simulate the melt front advancement and estimate possible mold void distribution. Warpage analysis considering both chemical shrinkage and CTE (Coefficient of Thermal Expansion) mismatch was performed afterwards. The MUF injection analysis showed mold void generated near the center of underfill area. The warpage analysis indicated that stresses caused by chemical shrinkage and CTE mismatch acted in opposite directions, and the overall warpage was dominated by CTE mismatch. Simulation results of injection analysis were validated by short shot experiment and SAM (Scanning Acoustic Microscopy) test, respectively, and the warpage prediction was verified by measurement data. Finally, MUF process setting with four parameters was optimized based on the established numerical models, three indicators of mold quality had been improved by 9.10%, 8.95% and 20.6% respectively. |
Starting Page | 703 |
Ending Page | 710 |
File Size | 1422379 |
Page Count | 8 |
File Format | |
ISBN | 9781479947072 |
DOI | 10.1109/ICEPT.2014.6922750 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2014-08-12 |
Publisher Place | China |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Fitting Flip-chip devices Strips Numerical models Viscosity Compounds Warpage Flip Chip Molded Underfill (MUF) Numerical Analysis Mold Void |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|