Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Sarac, F. Uslan, V. Seker, H. Bouridane, A. |
| Copyright Year | 2015 |
| Description | Author affiliation: Fac. of Eng., Mevlana Univ., Konya, Turkey (Uslan, V.) || Fac. of Eng. & Environ., Univ. of Northumbria at Newcastle, Newcastle upon Tyne, UK (Sarac, F.; Seker, H.; Bouridane, A.) |
| Abstract | Identification of robust set of predictive features is one of the most important steps in the construction of clustering, classification and regression models from many thousands of features. Although there have been various attempts to select predictive feature sets from high-dimensional data sets in classification and clustering, there is a limited attempt to study it in regression problems. As semi-supervised and supervised feature selection methods tend to identify noisy features in addition to discriminative variables, unsupervised feature selection methods (USFSMs) are generally regarded as more unbiased approach. Therefore, in this study, along with the entire feature set, four different USFSMs are considered for the quantitative prediction of peptide binding affinities being one of the most challenging post-genome regression problems of very high-dimension comparted to extremely small size of samples. As USFSMs are independent of any predictive method, support vector regression was then utilised to assess the quality of prediction. Given three different peptide binding affinity data sets, the results suggest that the regression performance of USFMs depends generally on the datasets. There is no particular method that yields the best performance compared to their performances in the classification problems. However, a closer investigation of the results appears to suggest that the spectral regression-based approach yields slightly better performance. To the best of our knowledge, this is the first study that presents comprehensive comparison of USFSMs in such high-dimensional regression problems, particularly in biological domain with an application in the prediction of peptide binding affinity, and provides a number of practical suggestions for future practitioners. |
| Starting Page | 8173 |
| Ending Page | 8176 |
| File Size | 671069 |
| Page Count | 4 |
| File Format | |
| ISSN | 1557170X |
| e-ISBN | 9781424492718 |
| DOI | 10.1109/EMBC.2015.7320291 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-08-25 |
| Publisher Place | Italy |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Peptides Predictive models Support vector machines Noise measurement Clustering algorithms Prediction algorithms |
| Content Type | Text |
| Resource Type | Article |
| Subject | Signal Processing Biomedical Engineering Health Informatics Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|