Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Aktaruzzaman, M. Scarabottolo, N. Sassi, R. |
Copyright Year | 2015 |
Description | Author affiliation: Dipt. di Inf., Univ. degli Studi di Milano, Crema, Italy (Aktaruzzaman, M.; Scarabottolo, N.; Sassi, R.) |
Abstract | Insufficient amount of physical activity, and hence storage of calories may lead depression, obesity, cardiovascular diseases, and diabetes. The amount of consumed calorie depends on the type of activity. The recognition of physical activity is very important to estimate the amount of calories spent by a subject every day. There are some research works already published in the literature for activity recognition through accelerometers (body worn sensors). The accuracy of any recognition system depends on the robustness of selected features and classifiers. The typical features reported for most physical activities recognitions are autoregressive coefficients (ARcoeffs), signal magnitude area (SMA), tilt angle (TA), and standard deviation (STD). In this study, we have studied the feasibility of using single value of sample entropy estimated parametrically $(SE_{TH})$ of an AR model instead of ARcoeffs. After feasibility study, we also compared the recognition accuracies between two popular classifiers ı.e. artificial neural network (ANN) and support vector machines (SVM). The recognition accuracies using linear structure (where all types of activities are classified using a single classifier) and hierarchical structure (where activities are first divided into static and dynamic events, and then activities of each event are classified in the second stage). The study showed that the use of $SE_{TH}$ provides similar recognition accuracy (69.82%) as provided by ARcoeffs (67.67%) using ANN. The linear structure of SVM performs better (average accuracy of SVM: 98.22%) than linear ANN (average accuracy with ANN: 94.78%). The use of hierarchical structure of ANN increases the average recognition accuracy of static activities to about 100%. However, no significant changes are observed using hierarchical SVM than the linear one. |
Starting Page | 470 |
Ending Page | 473 |
File Size | 922272 |
Page Count | 4 |
File Format | |
ISSN | 1557170X |
e-ISBN | 9781424492718 |
DOI | 10.1109/EMBC.2015.7318401 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2015-08-25 |
Publisher Place | Italy |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Accuracy Support vector machines Artificial neural networks Accelerometers Acceleration Sensors Entropy |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Biomedical Engineering Health Informatics Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|