Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Pei-Siang, S.L. Che Faxing Chong Ser Choong Rong, M.C.B. Sekhar, V.N. Rao, V.S. Chai Tai Chong |
| Copyright Year | 2011 |
| Description | Author affiliation: Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Singapore Science Park II S(117685), Singapore (Pei-Siang, S.L.; Che Faxing; Chong Ser Choong; Rong, M.C.B.; Sekhar, V.N.; Rao, V.S.; Chai Tai Chong) |
| Abstract | The requirements for high density packaging such as smaller form factor, high performance and multi functionality electronics products have resulted in electronics industry moving towards 3D System in package technology (3D SIP). Some of the main advantages of 3D SIP packaging are high volume applications, smaller form factor, better connectivity between components in a 3D package, lower noise, lower power consumption and higher operating frequencies [1]. A 3D package is a cost effective solution as it helps to save placement and routing area on board using several IC process in the same module. A stacked die SiP package offers flexibility in combining die from different fab processes into a single package. Board area savings are realized by stacking the die vertically vs a side by side approach. This package technology is mainly used where X-Y size constraint is the critical requirement. Some of the key technologies needed to enable chip stacking include silicon through-vias and high-density lead-free interconnects [2]. In the paper, 2 different reflow approaches are used for the 3 die stacked flip chip assembly (i) sequential reflow and (ii) 3 die stacked simultaneous reflow. The effect of the reflow approaches of the stacked die assembly with TSV on die warpage, solder wetting, solder voids and bonding alignment is addressed in this paper. In addition, a simple D.O.E was conducted to understand the effect of bond force on thin die stacked assembly Pb-free microbumps is also reported. Results showed that optimum bond force is important to ensure no die cracks during flip chip bonding for 3 layer stacked die. In addition to the DOE conducted to understand the effect of bonding parameters on thin stacked die assembly, the selection of flux in terms of flux tackiness, flux for good solder wetting and minimum solder voids in the flip chip assembly were also addressed in this work. Low standoff for microjoint assembly often poses a challenge for underfill dispensing process. The standoff between the microbump joint of the chip on chip flip chip bonding is usually about 15µm to 20µm. The dispensing space is tight and often with limitations on the area where underfill fluids can be dispensed. Therefore it is important to evaluate flowability, bleeding of the underfill and the void formation in the underfill for stacked die assembly. The impact of these various factors on the stacked die assembly was discussed in this paper. Finally moldable underfill is then used to encapsulate the 3 layer stacked chip on the substrate. |
| Starting Page | 455 |
| Ending Page | 461 |
| File Size | 1754664 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781457719837 |
| e-ISBN | 9781457719820 |
| e-ISBN | 9781457719813 |
| DOI | 10.1109/EPTC.2011.6184464 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-12-07 |
| Publisher Place | Singapore |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Stacking Assembly Flip chip Force Three dimensional displays Substrates |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|