Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Chang, H.H. Shih, Y.C. Hsiao, Z.C. Chiang, C.W. Chen, Y.H. Chiang, K.N. |
| Copyright Year | 2009 |
| Description | Author affiliation: Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (Chiang, K.N.) || Industrial Technology Research Institute, Bldg. 17, 195, Sec. 4, Chung Hsing Rd. Chutung, Hsinchu, Taiwan, R.O.C. (Chang, H.H.; Shih, Y.C.; Hsiao, Z.C.; Chiang, C.W.; Chen, Y.H.) |
| Abstract | In this study, bottom-up electroplating is used for TSV (Through Silicon via) fabrication. With the metal temporarily bonding technology, we could remove the handling substrate and perform the chip stacking process. The TSVs made by bottom-up electroplating do not need the expensive MOCVD seed layer deposition and special designed electroplater/solution. Moreover, it is independent with the DRIE angle and the scallop at the sidewall of the vias. By using the bottom-up electroplating technology, we could fabricate the TSVs in much shorter process time to save the process cost. From the X-Ray images and the SEM pictures, the diameter of the vias is 5.3 micron meters and the length of the vias is 67 micron meters. The aspect ratio of the bottom-up electroplated TSVs is larger than 12 and all the vias are definitely void free. X-Ray image also shows the process yield is very high. After the thermal shock reliability test, the resistance measurement and the vias are fine from the SEM pictures. There is no crack found at the sidewall of the vias. After the TSV process, the bonded electrode continues to serve as electrode for the mask-less Sn electroplating. The electroplating current goes through the bottom electrode TSVs and the Sn is electroplated on the TSVs without mask define. Sn bump served as mechanical and electrical connection. We also demonstrate the dry etching process for wafer thinning on a 170°C thermal release tape with handling substrate. After the etching process, the thickness of the chip is about 5µm and then it is released from the handling substrate successfully. For thin wafer handling technology, we proposed a metal temporarily bonding technology. Au to Au bonding is used here for metal temporarily bonding. After the wafer thinning process, the sample could sustain high temperature process without crack and could be removed from the handling substrate after the process. This study also demonstrates the process flow for the 3D chip stacking by using the bottom-up electroplated TSVs. The handling substrate is removed by metal temporarily bonding technology and the interconnection is done by Cu/Sn bump. Based on this technology, the TSVs in the 3D chip stacking could be made in shorter electroplating time and low cost way by a traditional electroplater. |
| Starting Page | 1177 |
| Ending Page | 1184 |
| File Size | 2123998 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781424444755 |
| ISSN | 05695503 |
| DOI | 10.1109/ECTC.2009.5074161 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-05-26 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Wafer bonding Tin Stacking Electrodes Through-silicon vias Costs X-ray imaging Gold Silicon Fabrication |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|