Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Braun, T. Raatz, S. Voges, S. Kahle, R. Bader, V. Bauer, J. Becker, K.-F. Thomas, T. Aschenbrenner, R. Lang, K.-D. |
| Copyright Year | 2015 |
| Description | Author affiliation: Microperipheric Center, Tech. Univ. Berlin, Berlin, Germany (Voges, S.; Kahle, R.; Thomas, T.; Lang, K.-D.) || Fraunhofer Inst. for Reliability & Microintegration, Berlin, Germany (Braun, T.; Raatz, S.; Bader, V.; Bauer, J.; Becker, K.-F.; Aschenbrenner, R.) |
| Abstract | Fan-out Wafer Level Packaging (FOWLP) is one of the latest packaging trends in microelectronics. Mold embedding for this technology is currently done on wafer level up to 12"/300 mm diameter. For higher productivity and therewith lower costs larger mold embedding form factors are forecasted for the near future. Following the wafer level approach then the next step will be a reconfigured wafer size of 450 mm. An alternative option would be leaving the wafer shape and moving to panel sizes leading to Fan-out Panel Level Packaging (FOPLP). Sizes for the panel could range up to 24"×18" or even larger. For reconfigured mold embedding, compression mold processes are used in combination with liquid, granular or sheet compound. As a process alternative also lamination as used e.g. in PCB manufacturing can be taken into account.=Within this paper the evaluation of panel level compression molding with a target form factor of 24”*18” / 610×457 $mm^{2}$ is described. The large panel size equals a typical PCB manufacturing full format and is selected to achieve process compatibility with cost efficient PCB processes. Here not only conventional compression molding is considered but also the new process compression mold lamination is introduced as a tool-less mold alternative. Panel level molding is compared to 8” and 12” wafer molding as well as to low cost PCB 24”×18” lamination focusing on manufacturing challenges, high volume capability and estimated cost. Technological focus of this study will be the evaluation of liquid, granular and sheet molding compound. This includes thorough material analysis regarding the process relevant material properties as reactivity or viscosity. One key process step for homogeneous large area embedding is material application before compression molding. Where sheet compounds already deliver a uniform material layer the application of liquid and granular compound must be optimized and adapted for a homogeneous distribution without flow marks, knit lines and incomplete fills. Hence, dispense patterns of liquid and granular molding compounds are studied to achieve high yield and reliable mold embedding. In addition applicable thickness ranges, total thickness variations, void risks and warpage will be investigated for the different material types. The overall a process flow will be demonstrated for selected compression mold variants resulting in a 24”×18” / 610×457 $mm^{2}$ FOPLP using PCB based redistribution layer (RDL) as low cost alternative to thin film technology. For=PCB based RDLs a resin coated copper sheet (RCC) is laminated on the reconfigured wafer or panel, respectively. Micro vias are drilled through the RCC layer to the die pads and electrically connected by Cu plating. Final process step is the etching of Cu lines using laser direct imaging (LDI) techniques for maskless patterning. All process steps are carried out on full format 24”×18” / 610×457 $mm^{2}.$ |
| Starting Page | 1077 |
| Ending Page | 1083 |
| File Size | 1474554 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781479986095 |
| DOI | 10.1109/ECTC.2015.7159728 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-05-26 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Liquids Compounds Compression molding Assembly Cavity resonators Lamination Copper |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|