Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yu-Wei Huang Chia-Wen Fan Yu-Min Lin Su-Yu Fun Su-Ching Chung Jing-Ye Juang Ren-Shin Cheng Shi-Yi Huang Tao-Chih Chang Chau-Jie Zhan |
| Copyright Year | 2015 |
| Description | Author affiliation: Electron. & Optoelectron. Res. Labs., Ind. Technol. Res. Inst., Hsinchu, Taiwan (Yu-Wei Huang; Chia-Wen Fan; Yu-Min Lin; Su-Yu Fun; Su-Ching Chung; Jing-Ye Juang; Ren-Shin Cheng; Shi-Yi Huang; Tao-Chih Chang; Chau-Jie Zhan) |
| Abstract | In 3D integration, die stacking together with underfilling by capillary-type underfill are the principal processes within whole conventional assembly process. How to integrate and shorten the total process steps during assembly and increase the die-stacking yield especially for thin die stack to improve the throughput that can meet the requirement from industry will be a crucial issue. In this investigation, we proposed the high throughput adhesive bonding scheme by using wafer-level underfill material for the die-to-interposer stacking with 30μm-pitch micro interconnections. The reliability characterization of the die-to-interposer stack by such bonding scheme was implemented and confirmed. Die-to-interposer test vehicle was adopted to develop the proposed adhesive bonding scheme. The micro joints of electroplating Cu/Sn solder micro bumps joined with electroplating Cu/Ni/Au micro bumps was selected as the joining structure. There were more than 3000 bumps designed in the test vehicle. Three types of wafer-level underfill material were evaluated and selected to be the suitable processing material. The optimized die-to-interposer boding profile by wafer-level underfill were developed and determined for the purpose of high throughput in this study. After assembly process by the developed adhesive bonding scheme, reliability characterization was conducted on the die-to-interposer modules. Pre-conditioning, temperature cycling test (TCT), thermal & humidity storage test (THST) and die shear test were selected to assess reliability performance of the die-to-interposer module assembled by the proposed adhesive bonding scheme. Under the optimized bonding profile, one-die assembly could be finished less than 20 seconds, which was comparable to the process time of thermocompression bonding only. Also, the wetting and joining abilities of the micro joints were as good as those bonded by thermocompression bonding with flux and no voids were found between dies. By such adhesive bonding scheme, processes of flux cleaning and underfill dispensing and curing were no longer necessary, which could apparently enhance the throughput of die stacking. Results of reliability tests revealed that no electrical-connectivity fail and delamination happened on those die-to-interposer modules with 30μm-pitch micro interconnects after TCT of 1000 cycles and THST of 1000 hours though die shear strength showed a slight degradation less than 20%. In this investigation, the developed high throughput adhesive bonding scheme displayed the high potential that could be suitable and applicable for fine pitch 3D integration and high volume manufacturing requirements. |
| Starting Page | 490 |
| Ending Page | 495 |
| File Size | 7818861 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781479986095 |
| DOI | 10.1109/ECTC.2015.7159636 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-05-26 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Films Bonding Reliability Joints Assembly Lamination Throughput |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|