Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Wenjie Chen Xinying Ma Zhi Chen Zhuoxun Li Yaojia Chi Chong Han Shaoqian Li |
| Abstract | Terahertz (THz) communications recently attract significant attention and become an emerging technology pillar for sixth generation (6G) wireless systems. Due to the serious path attenuation of THz signals, THz communication is applicable for the short-distance indoor scenarios. However, the THz waves are easily blocked by obstacles, leading to a communication interruption. To this end, an intelligent reflecting surface (IRS), which interacts with incident THz waves in a controlled manner by adjusting the discrete phase shifts of the IRS elements, is considered as a promising technology to mitigate blockage vulnerability and enhance coverage capability for indoor scenarios. In light of graphene-enabled hardware structure of an IRS, the IRS-assisted THz multiple-input multiple-output (MIMO) system model is developed. Moreover, an iterative atom pruning based subspace pursuit (IAP-SP) scheme is developed for channel estimation. Compared to the classical subspace pursuit (SP) scheme, the proposed IAP-SP algorithm can substantially reduce the computational complexity while maintaining accurate channel recovery. With the estimated channel, a data rate maximization problem is formulated, which can be converted to a discrete phase shift search problem. The exhaustive search method is firstly proposed to obtain the optimal transmission rate but endure extremely high computational burden. Then, a local search method is proposed to decrease the number of possible discrete phase candidates of IRS while undergoes obvious performance loss. Interestingly, a novel feedforward fully connected structure based deep neural network (DNN) scheme is put forward, which has the ability to learn how to output the optimal phase shift configurations by inputting the features of estimated channel. Simulation results demonstrate that, in contrast with the exhaustive search scheme and the local search scheme, the proposed DNN-based scheme achieves a near-optimal communication rate performance. Meanwhile, the DNN-based scheme enormously alleviates the computational complexity and allows for dynamic parameter adaption in rapid-varying channel conditions. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2020.2994100 |
| Journal | IEEE Access |
| Volume Number | 8 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2020-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Terahertz (thz) Communications Sixth Generation (6g) Intelligent Reflecting Surface (irs) Channel Estimation Deep Neural Network (dnn) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|