Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Mengjie Hu Hezheng Lin Zimeng Fan Wenjie Gao Lu Yang Chun Liu Qing Song |
| Abstract | The development of convolutional neural networks has promoted the progress of computer-aided diagnostic systems. Details in medical image, such as the texture and tissue structure, are crucial features for diagnosis. Therefore, large input images combined with deep convolution neural networks are adopted to boost the performance in recent research of chest X-ray diagnosis. Meanwhile, due to the variable sizes of thoracic diseases, many researchers have worked to introduce additional module to capture multi-scale feature of images in CNN. However, these efforts hardly consider the computational costs of large inputs and introduced additional modules. This paper aims to automatically diagnose diseases on chest X-rays images quickly and effectively. We propose the multi-kernel depthwise convolution(MD-Conv) which contains depthwise convolution kernels with different filter sizes in one depthwise convolution layer. MD-Conv has high calculation efficiency and few parameters. Because its ability to learn multi-scale feature based on the multi-size kernels, it is appropriate for medical images diagnosis tasks in which abnormalities varied in sizes. In addition, larger depthwise convolution kernels are adopted in MD-Conv to obtain a larger receptive field efficiently, which can ensure sufficient receptive field for high resolution inputs. MD-Conv can be easily applied in modern lightweight networks to replace the normal depthwise convolution layer. We conduct experiments on the Chest X-ray 14 Dataset, which is the largest available chest x-ray dataset, and obtain competitive results. We also evaluate the MD-Conv on the new released dataset for pediatric pneumonia diagnosis. We obtain a better performance of 98.3% AUC than original paper (96.8%) for recognize pneumonia versus normal. Meanwhile we compare the FLOPs and Params of different models to show their efficiency for chest X-rays recognition. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2020.2974242 |
| Journal | IEEE Access |
| Volume Number | 8 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2020-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Chest X-ray Recognition Lightweight Networks Multi-kernels Depthwise Convolution |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|