Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Hong Yang Lipeng Gao Guohui Li |
Abstract | Underwater acoustic signal is highly complex and difficult to predict. To improve the prediction accuracy of underwater acoustic signal, a complex underwater acoustic signal prediction method combining correlation variational mode decomposition (CVMD), least squares support vector machine (LSSVM) and Gaussian process regression (GPR) is proposed. Aiming at the problem of sample partitioning, this paper proposes a method of obtaining the embedding dimension and time delay based on the extreme learning machine prediction model. By selecting the appropriate time delay and embedding dimension, the prediction accuracy has improved. Aiming at the K-value selection of variational mode decomposition (VMD), this paper proposes a CVMD decomposition method, which improves the adaptability of VMD algorithm by selecting K-value through the correlation coefficient. Firstly, CVMD is used to decompose the underwater acoustic time series into several different components. Then, LSSVM prediction models are established for each component. Finally, to further improve the prediction accuracy of the model, Gaussian process regression (GPR) is used to correct the prediction result. One-step and multi-step prediction of underwater acoustic time series is carried out in this paper. Simulation results show that the model proposed in this paper has high prediction accuracy and can be effectively used in underwater acoustic signal prediction. |
e-ISSN | 21693536 |
DOI | 10.1109/ACCESS.2020.2994895 |
Journal | IEEE Access |
Volume Number | 8 |
Language | English |
Publisher | IEEE |
Publisher Date | 2020-01-01 |
Publisher Place | United States |
Access Restriction | Open |
Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Underwater Acoustic Signal Variational Mode Decomposition Least Squares Support Vector Machine Gaussian Process Regression Prediction |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|