Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Mona Salem Al-Kharraz Lamiaa A. Elrefaei Mai Ahmed Fadel |
| Abstract | Chromosome analysis is an essential task in a cytogenetics lab, where cytogeneticists can diagnose whether there are abnormalities or not. Karyotyping is a standard technique in chromosome analysis that classifies metaphase image to 24 chromosome classes. The main two categories of chromosome abnormalities are structural abnormalities that are changing in the structure of chromosomes and numerical abnormalities which include either monosomy (missing one chromosome) or trisomy (extra copy of the chromosome). Manual karyotyping is complex and requires high domain expertise, as it takes an amount of time. With these motivations, in this research, we used deep learning to automate karyotyping to recognize the common numerical abnormalities on a dataset containing 147 non-overlapped metaphase images collected from the Center of Excellence in Genomic Medicine Research at King Abdulaziz University. The metaphase images went through three stages. The first one is individual chromosomes detection using YOLOv2 Convolutional Neural Network followed by some chromosome post-processing. This step achieved 0.84 mean IoU, 0.9923 AP, and 100% individual chromosomes detection accuracy. The second stage is feature extraction and classification where we fine-tune VGG19 network using two different approaches, one by adding extra fully connected layer(s) and another by replacing fully connected layers with the global average pooling layer. The best accuracy obtained is 95.04%. The final step is detecting abnormality and this step obtained 96.67% abnormality detection accuracy. To further validate the proposed classification method, we examined the Biomedical Imaging Laboratory dataset which is publicly available online and achieved 94.11% accuracy. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2020.3019937 |
| Journal | IEEE Access |
| Volume Number | 8 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2020-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Object Detection Convolutional Neural Network Deep Learning Chromosomes Classification Data Augmentation Transfer Learning |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|