Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Xinping Gu Yunpeng Han Junfu Yu |
Abstract | Lane-changing (LC) is a critical task for autonomous driving, especially in complex dynamic environments. Numerous automatic LC algorithms have been proposed. This topic, however, has not been sufficiently addressed in existing on-road manoeuvre decision methods. Therefore, this paper presents a novel LC decision (LCD) model that gives autonomous vehicles the ability to make human-like decisions. This method combines a deep autoencoder (DAE) network with the XGBoost algorithm. First, a DAE is utilized to build a robust multivariate reconstruction model using time series data from multiple sensors; then, the reconstruction error of the DAE trained with normal data is analysed for LC identification (LCI) and training data extraction. Then, to address the multi-parametric and nonlinear problem of the autonomous LC decision-making process, an XGBoost algorithm with Bayesian parameter optimization is adopted. Meanwhile, to fully train our learning model with large-scale datasets, we proposed an online training strategy that updates the model parameters with data batches. The experimental results illustrate that the DAE-based LCI model is able to accurately identify the LC behaviour of vehicles. Furthermore, with the same input features, the proposed XGBoost-based LCD model achieves better performance than other popular approaches. Moreover, a simulation experiment is performed to verify the effectiveness of the decision model. |
e-ISSN | 21693536 |
DOI | 10.1109/ACCESS.2020.2964294 |
Journal | IEEE Access |
Volume Number | 8 |
Language | English |
Publisher | IEEE |
Publisher Date | 2020-01-01 |
Publisher Place | United States |
Access Restriction | Open |
Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Autonomous Vehicle Lane-changing Identification Lane-changing Decision-making Deep Autoencoder Network Xgboost |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|