Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Jin Li Xiangmin Ji Liyan Hua |
| Abstract | Computational strategies play a vital role in the prediction of adverse drug events (ADEs) owing to their low cost and increased efficiency. In this study, we used the strengths of the Jaccard and Adamic-Adar indices to build feature fusion-based predictive network models (FFPNMs) with three different machine learning (ML) methods respectively to predict drug-ADE associations. Our FFPNM with the logistic regression (LR) model improved to an area under the receiver operating characteristic curve (AUROC) value of 0.849, while the corresponding AUROC values for the pharmacological network model (PNM) and model based on similarity measures were 0.824 and 0.821, respectively. FFPNM with random forest (RF) is the best model among them with an AUROC value of 0.856, and the performance of FFPNM with SVM is close to that of FFPNM with RF and higher than that of FFPNM with LR. In these models, the bipartite network consisted of 152 drugs and 633 ADEs, which were obtained from the FDA Adverse Event Reporting System (FAERS) 2010 dataset. To better evaluate the performance of FFPNMs, we performed model predictions by different network consisting of 1177 drugs and 97 ADEs which were from the data of the first 120 days of FAERS 2004. FFPNM with RF achieved the best predictive result with AUROC value of 0.913. The results show that FFPNMs with ML methods, specially RF, have a superior prediction performance and robustness using only the topology features of the drug-ADE network. From our findings, the optimal, concise, and efficient models as computational methods for drug-ADE association predictions, were revealed. Source codes of this paper are available on https://github.com/Coderljl/FFPNM. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2020.2979452 |
| Journal | IEEE Access |
| Volume Number | 8 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2020-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Adverse Drug Event Prediction Complex Network Machine Learning Local-information-based Similarity Measure Feature Fusion-based Predictive Network Model |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|