Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Renier, M. Gennisson, J.-L. Tanter, M. Catheline, S. Barriere, C. Royer, D. Fink, M. |
| Copyright Year | 2007 |
| Description | Author affiliation: Univ. Paris VII, Paris (Renier, M.; Gennisson, J.-L.; Tanter, M.; Catheline, S.; Barriere, C.; Royer, D.; Fink, M.) |
| Abstract | Dynamic elastography holds great promise for biological tissues characterization. Resulting from the radiation force induced by focused ultrasound beam, plane shear waves are generated within the medium and imaged with an ultrafast ultrasound scanner. Known as Supersonic Shear Imaging (SSI) technique, this method allows, from the measurements of shear wave velocities, to compute shear modulus (mu) maps. Beside, in order to improve tissue diagnostic, the evaluation of the nonlinear elastic moduli could be of some interest. Recently a new formulation of the nonlinear equation describing the propagation of plane shear waves in isotropic soft incompressible solids have been developed using a new expression, up to the fourth order, of the strain energy density (e): e = $muI_{2}$ + $A/3I_{3},$ + $DI_{2}$ $^{2}.$ Where $I_{2},$ $I_{3}$ are invariants defined by Landau of the strain tensor and A, D the third and fourth order shear elastic constants. It has been shown that the nonlinearity parameter depends only on three coefficients $beta_{s}$ = $beta_{s}$ (mu, A, D). To date, no measurement of the parameter D have been carried out in incompressible media. In order to estimate the nonlinear parameter A, this theoretical background on soft incompressible solids is applied to the acoustoelasticity theory. Such analysis gives the variations of shear wave speed as a function of the applied stress and leads to measure both the linear shear modulus (mu) and the third order shear modulus (A). Taking advantages of the SSI technique, an acoustoelasticity experiment is performed in different incompressible soft media (agar-gelatin based phantoms). In addition, to create finite amplitude plane shear waves, the SSI technique is replaced by a vibrator applied at the surface of the phantoms. Thanks to the ultrasound ultrafast imaging system, the third harmonic component is generated by nonlinearity is measured as a function of the propagation distance. Then by comparing experiments and analytical expression of the third harmonic component given by a perturbation method, the nonlinear parameter $beta_{s}$ is deduced. Finally, the combination of these experiments with results obtained in acoustoelasticity leads to the determination of the fourth order elastic modulus (D). First, measurements of the A modulus reveal that while the behavior of phantoms is quite close from a linear point of view, their nonlinear modulus A are quite different. Applied to acoustoelasticity, the SSI technique provides potential medical applications in in vivo conditions for nonlinear characterization of biological tissues. Second, results from the complete procedure reveal a variation of the nonlinear behavior as a function of the gelatin concentration increasing. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in incompressible soft media. |
| Starting Page | 554 |
| Ending Page | 557 |
| File Size | 1132909 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424413836 |
| ISSN | 10510117 |
| DOI | 10.1109/ULTSYM.2007.144 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-10-28 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Solids Ultrasonic imaging Imaging phantoms Biological tissues Velocity measurement Ultrasonic variables measurement Capacitive sensors Focusing Biology computing Nonlinear equations |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|