Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Weibel, J.A. Garimella, S.V. Murthy, J.Y. Altman, D.H. |
| Copyright Year | 2010 |
| Description | Author affiliation: School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, 585, West Lafayette, IN, USA, 47906 (Weibel, J.A.; Garimella, S.V.; Murthy, J.Y.) || Raytheon Integrated Defense Systems, Sudbury, MA 01776, USA (Altman, D.H.) |
| Abstract | Nanostructured materials, such as those enhanced with carbon nanotube (CNT) arrays, offer great promise for use as wicks in heat pipes and other passive phase-change cooling applications. While such nanostructures feature very small pore sizes which support high capillary pressures, it is shown that the low permeability of these dense arrays prevents their use as the sole fluid transport mechanism. It is proposed that evaporator surfaces composed of nanostructured areas be surrounded and fed by interspersed conventional wick materials (such as sintered powders) which provide the required permeability for fluid flow. Optimization of wicks with integrated sintered and nanostructured areas for minimized total thermal resistance requires a study of the trade-offs between the greater permeability of the sintered materials and the greater capillary pressure and thin-film evaporation area offered by the nanostructures. The geometry chosen for the current optimization efforts is a series of alternating wedges of CNT array and sintered powder regions covering a circular evaporator region. A numerical model is developed to estimate the thermal resistance of the evaporator region compared to that of a homogeneous sintered powder wick. The inputs needed for this model include the permeability and capillary pressure in the two regions. A parametric study is conducted as a function of the ratio of conduction and evaporative resistances for the nanostructured and sintered regions. For a given heat input, the wedge angles of the CNT array and sintered powder regions are varied to find the optimal liquid-feeding geometry that minimizes thermal resistance. The heat input is varied from 10 to 50 W over a 10 mm diameter circular evaporator region. It is found for conservative heat inputs that the evaporator resistance can be minimized by using interspersed wedges below an angle of 15°. In general, as the heat input requirements increase, smaller wedge angles are required to achieve the same minimized the thermal resistance. In the best cases, the thermal resistance is reduced by a factor of thirteen through the use of the integrated nanostructured wicks compared to the resistance of a homogeneous sintered powder wick. |
| Starting Page | 1 |
| Ending Page | 7 |
| File Size | 688410 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781424453429 |
| ISSN | 10879870 |
| e-ISBN | 9781424453436 |
| DOI | 10.1109/ITHERM.2010.5501322 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-06-02 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Surface resistance Thermal resistance Powders Permeability Nanostructured materials Resistance heating Phased arrays Nanostructures Geometry Carbon nanotubes carbon nanotube (CNT) evaporation nanostructured wicks heat pipe vapor chamber thermal resistance sintered powder wick |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|