Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Lyshevski, S.E. Sinha, A. |
| Copyright Year | 2008 |
| Description | Author affiliation: Dept. of Electr. Eng., Rochester Inst. of Technol., Rochester, NY (Lyshevski, S.E.) |
| Abstract | This paper focuses on control of electron transports and switching of molecular devices $(^{M}devices).$ To accomplish these objectives one should control motion of charge carriers. Various phenomena and transitions, exhibited by $^{M}devices$ (microscopic systems) and microscopic particles, can be utilized only if specific effects, evolutions and events are controlled ensuring device functionality and required capabilities. Concentrating on molecular electronics, our objective is to develop sound and practical solutions. Molecular (nano) electronics is fundamentally distinct and cannot be compared to solid-state microelectroncs due to: (1) Distinct phenomena exhibited and utilized; (2) Device physics and functionality differences; (3) Distinct device-physics centered control principles and mechanisms; etc. We examine dynamics and control of microscopic charge carriers in $^{M}devices.$ In particular, for solid and fluidic $^{M}devices,$ the controlled motion of electrons, ions and molecules is studied. Applying sound device physics, we report theoretical and applied developments in analysis and control of $^{M}device$ transitions with a primary focusing on: (i) Device physics and analysis consistency; (ii) Device physics and control coherency; (iii) Device physics and technology soundness. It is possible to control the transitions and motion of microscopic particles (charge carriers) thereby control tunneling, transport, characteristics and other evolutions exhibited by $^{M}device$ variables (quantities of interest). The processing and memory transitions at the device level are defined by the device physics, control principles, behavior of microscopic system (device) and particles, etc. The ability to control microscopic particles means guarantying the overall device functionality. We examine the device physics and demonstrate that the device functionality, performance requirements and specified capabilities can be achieved by controlling principles. The results are validated by examining device transitions by applying quantum mechanics. We perform high-fidelity modeling and carry out heterogeneous simulations. The quantifying and qualifying studies are reported. |
| Starting Page | 311 |
| Ending Page | 314 |
| File Size | 321947 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424421039 |
| DOI | 10.1109/NANO.2008.99 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-08-18 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Microscopy Physics Equations Magnetic fields Evolution (biology) Electron microscopy Charge carriers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|