Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Senatore, C. Al Hossain, M.S. Flukiger, R. |
| Copyright Year | 2002 |
| Abstract | The cold high pressure densification technique (CHPD) was recently developed in Geneva for improving the in-field critical current density Jc of in situ binary and alloyed MgB2 wires and tapes,. Jc of CHPD treated square wires alloyed with malic acid (C4H6O5) was enhanced by a factor 2 at 10 T and 4.2 K. In order to understand the fundamental mechanism behind this strong improvement of Jc, the properties of binary and alloyed MgB2 wires have been investigated without and with CHPD, using resistivity and specific heat measurements in the temperature range from 5 to 35 K in magnetic fields up to 15 T. In particular, a deconvolution of the specific heat data was used to determine the distribution of Tc in the samples. We have found that the effect of the densification process on the electrical and transport properties is related to the improved grain connectivity and percolation. By combining the results arising from the analysis of the Tc distribution and those from resistivity measurements, it is concluded that the minimum superconducting volume fraction needed for the percolation of a superconducting path is strongly reduced in samples treated by CHPD. |
| Sponsorship | Council on Superconductivity Appl. Superconductivity Conference Inc MIT |
| Starting Page | 2680 |
| Ending Page | 2685 |
| Page Count | 6 |
| File Size | 677455 |
| File Format | |
| ISSN | 10518223 |
| Volume Number | 21 |
| Issue Number | 3 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-06-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Wires Conductivity Temperature measurement Superconducting magnets Heating Superconducting filaments and wires Solids $T_{c}$ distribution Cold densification connectivity ${\rm MgB}_{2}$ percolation specific heat |
| Content Type | Text |
| Resource Type | Article |
| Subject | Condensed Matter Physics Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|