Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Huang, Guohua Lin, Lu Feng, Kaiyan Zhao, Jun Zhang, Yuchao Xu, Yaochen Zhang, Ning Li, Bi-qing Huang, Weiping Cai, Yu-dong |
| Copyright Year | 2014 |
| Abstract | Protein S-nitrosylation plays a very important role in a wide variety of cellular biological activities. Hitherto, accurate prediction of S-nitrosylation sites is still of great challenge. In this paper, we presented a framework to computationally predict S-nitrosylation sites based on kernel sparse representation classification and minimum Redundancy Maximum Relevance algorithm. As much as 666 features derived from five categories of amino acid properties and one protein structure feature are used for numerical representation of proteins. A total of 529 protein sequences collected from the open-access databases and published literatures are used to train and test our predictor. Computational results show that our predictor achieves Matthews' correlation coefficients of 0.1634 and 0.2919 for the training set and the testing set, respectively, which are better than those of k-nearest neighbor algorithm, random forest algorithm, and sparse representation classification algorithm. The experimental results also indicate that 134 optimal features can better represent the peptides of protein S-nitrosylation than the original 666 redundant features. Furthermore, we constructed an independent testing set of 113 protein sequences to evaluate the robustness of our predictor. Experimental result showed that our predictor also yielded good performance on the independent testing set with Matthews' correlation coefficients of 0.2239. |
| Related Links | http://dx.doi.org/10.1155/2014/438341 |
| Starting Page | 438341 |
| File Format | |
| ISSN | 23146133 |
| e-ISSN | 23146141 |
| Journal | BioMed Research International |
| Volume Number | 2014 |
| Language | English |
| Publisher | Hindawi Publishing Corporation |
| Publisher Date | 2014-01-01 |
| Access Restriction | Open |
| Rights Holder | Hindawi Publishing Corporation |
| Subject Keyword | Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Immunology and Microbiology Medicine Biochemistry, Genetics and Molecular Biology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|