Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Braun, T. Bottcher, L. Bauer, J. Manessis, D. Jung, E. Ostmann, A. Becker, K.-F. Aschenbrenner, R. Reichl, H. Guerrieri, R. Gambari, R. |
| Copyright Year | 2007 |
| Description | Author affiliation: Fraunhofer Inst. for Reliability & Microintegration, Berlin (Braun, T.; Bottcher, L.; Bauer, J.; Jung, E.; Ostmann, A.; Becker, K.-F.; Aschenbrenner, R.) |
| Abstract | Microtechnologies are widely used in many applications as e.g. for the automotive or telecommunication industry. But it could be also a versatile tool for biological and biomedical applications. Microwells have been established long in this application field but remained without any additional functionality up to now. Merging new fabrication techniques and handling concepts with microelectronics enables the realization of intelligent microwells suitable for future applications e.g. improved cancer treatment. For the implementation of a dielectrophoresis enhanced microwell device a technology based on standard PCB technology has been developed. But as materials from PCB technology are not biocompatible new materials have to be selected, tested and processes adapted to these new packaging materials. With promising preselected materials for an enhanced microwell device biocompatibility tests have been carried out. As base conducting metal layer aluminum has been selected. Different dielectric materials were evaluated with focus on their processability. Goal of this preselection study was to find materials, which allow a fine structuring and realization of thin layers for the required application geometries. Thin aluminum foils are structured by laser micro machining and laminated successively to obtain minimum registration tolerances of the respective layers. The microwells are also laser machined into the laminate, allowing capturing and handling individual cells within a dielectrophoretic cage realized by the structured aluminum as well as providing access holes for the layer-to-layer interconnection. Furthermore, surface treatments with e.g. thiols and fluorinated acrylates on different materials were inspected by surface tension and wetting analysis to allow designing the hydrophilic/hydrophobic microfluidic networks required for the microwell device. First demonstrators are presenting the developed technologies and structures realized. In summary this paper describes the material selection for a biocompatible microwell device, the development of the individual process steps and results on the microstructuring as well as on biocompatibility of the materials are given. |
| Starting Page | 406 |
| Ending Page | 410 |
| File Size | 538500 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781424413249 |
| DOI | 10.1109/EPTC.2007.4469719 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-12-10 |
| Publisher Place | Singapore |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Dielectrophoresis Biological materials Dielectric materials Conducting materials Aluminum Materials testing Optical materials Automotive engineering Communication industry Merging |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|