Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Grondman, I. Busoniu, L. Babuska, R. |
| Copyright Year | 2012 |
| Description | Author affiliation: CNRS, Research Center for Automatic Control, University of Lorraine, Nancy, France (Busoniu, L.) || Delft Center for Systems and Control of Delft University of Technology, The Netherlands (Grondman, I.; Babuska, R.) |
| Abstract | Reinforcement learning (RL) control provides a means to deal with uncertainty and nonlinearity associated with control tasks in an optimal way. The class of actor-critic RL algorithms proved useful for control systems with continuous state and input variables. In the literature, model-based actor-critic algorithms have recently been introduced to considerably speed up the the learning by constructing online a model through local linear regression (LLR). It has not been analyzed yet whether the speed-up is due to the model learning structure or the LLR approximator. Therefore, in this paper we generalize the model learning actor-critic algorithms to make them suitable for use with an arbitrary function approximator. Furthermore, we present the results of an extensive analysis through numerical simulations of a typical nonlinear motion control problem. The LLR approximator is compared with radial basis functions (RBFs) in terms of the initial convergence rate and in terms of the final performance obtained. The results show that LLR-based actor-critic RL outperforms the RBF counterpart: it gives quick initial learning and comparable or even superior final control performance. |
| Starting Page | 5272 |
| Ending Page | 5277 |
| File Size | 364787 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781467320658 |
| ISSN | 07431546 |
| e-ISBN | 9781467320665 |
| e-ISBN | 9781467320641 |
| DOI | 10.1109/CDC.2012.6426427 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-12-10 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Approximation algorithms Function approximation Mathematical model Linear regression Tuning Learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Optimization Control and Systems Engineering Modeling and Simulation |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|