Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Liu, Weifeng Li, Yang Lin, Xu Tao, Dacheng Wang, Yanjiang |
| Editor | Chen, Kewei |
| Copyright Year | 2014 |
| Abstract | Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms. |
| Related Links | http://dx.doi.org/10.1371/journal.pone.0108474 |
| Starting Page | 108474 |
| File Format | |
| ISSN | 19326203 |
| e-ISSN | 19326203 |
| Journal | PLoS ONE |
| Issue Number | 9 |
| Volume Number | 9 |
| Language | English |
| Publisher | Public Library of Science |
| Publisher Date | 2014-09-01 |
| Access Restriction | Open |
| Rights Holder | Public Library of Science |
| Subject Keyword | Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) Medicine(all) Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Multidisciplinary |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|