Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Xin-Wei Shih Yao-Wen Chang |
| Copyright Year | 2010 |
| Description | Author affiliation: Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (Xin-Wei Shih; Yao-Wen Chang) |
| Abstract | In high-performance synchronous chip design, a buffered clock tree with small clock skew is essential for improving clocking speed. Due to the insufficient accuracy of timing models for modern chip design, embedding simulation into a clock-tree synthesis flow becomes inevitable. Consequently, the runtime for clock-tree synthesis becomes prohibitively huge as the complexity of chip designs grows rapidly. To construct a buffered clock tree efficiently, we propose an ultra fast timing-model independent approach to perform skew minimization by structure optimization. To achieve the goal, a novel clock-tree structure, called symmetrical structure, is presented. At each level of a symmetrical clock tree, the number of branches, the wire-length, and the inserted buffers are almost the same. It is natural that the clock skew could be minimized if the configurations of all paths from the clock source to sinks are similar. By symmetrically constructing a clock tree, the clock skew can be minimized without referring to simulation information. Experimental results show that our approach can not only efficiently construct a buffered clock tree, but also effectively minimize clock skew with marginal wiring overheads. Based on a set of commonly used IBM benchmarks, for example, a state-of-the-art work without (with) ngspice simulation results in averagely 7.93X (2.77X) clock skew and requires 46X (24343X) runtime over our approach. |
| Starting Page | 80 |
| Ending Page | 85 |
| File Size | 455754 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781424466771 |
| ISSN | 0738100X |
| e-ISBN | 9781450300025 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-06-13 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Association for Computing Machinery, Inc. (ACM) |
| Subject Keyword | Clocks Chip scale packaging Timing Wiring Delay Minimization Accuracy Runtime Design engineering Computational modeling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|