Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Bluestein, Danny Alemu, Yared Rissland, Peter Dumont, Kris Verdonck, Pascal |
| Copyright Year | 2007 |
| Abstract | 3D physiologic geometry of St. Jude Medical (SJM) valve after implantation was simulated with non-Newtonian two-phase blood model. The simulation used the unsteady Reynolds averaged Navier-Stokes (URANS) approach and the Wilcox k-ω turbulent model. Platelet stress accumulation and the resulting platelet damage were calculated from the results. Thrombogenic potential of two bileaflet MHV geometries was conducted using fluid-structure interaction (FSI) computation. Two commercially available valve geometries, SJM and ATS, which differ mostly in their hinge design, were simulated in a straight geometry with sudden expansion downstream of the valve. The thrombogenic potential of the two valves was based on computed wall shear stresses on the leaflets and cumulative shear stress on multiple particles released during forward and reverse flow phases. Platelet stress accumulation along pertinent trajectories from the FSI studies indicated that the SJM valve has a higher thrombogenic potential then the ATS valve. Flow patterns generated by the valve are conducive to platelet activation provide optimal conditions for activated platelets to interact with each other and form aggregates are hypothesized to be the source of thromboemboli formation, increasing the risk for cardioembolic stroke. The new damage model developed was utilized to estimate the effects of repeated passages and platelet senescence on this thrombogenic potential. Flow and pressure effects on a cell like a platelet can be well represented by a continuum mechanics model down to the order of the μm level. However, the molecular effects of adhesion/aggregation bonds are on the order of nm. Thus we also adopt a discrete particles dynamics (DPD) approach in which the macroscopic model provides information about the flow induced stresses that may activate blood cellular constituents. This multiscale modeling approach concentrates on flow regions in prosthetic devices like MHVs and cardiovascular pathologies that have a high propensity to activate platelets and form aggregates. Preliminary simulations of blood flow in simple geometries using this approach, which widely departs from the traditional continuum approach, is successful in generating viscous blood flow velocity distributions in these geometries. |
| Sponsorship | Bioengineering Division |
| Starting Page | 535 |
| Ending Page | 536 |
| Page Count | 2 |
| File Format | |
| ISBN | 0791847985 |
| DOI | 10.1115/SBC2007-176785 |
| Conference Proceedings | ASME 2007 Summer Bioengineering Conference |
| Language | English |
| Publisher Date | 2007-06-20 |
| Publisher Place | Keystone, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Prostheses Heart valve prostheses Valves Risk Fluid structure interaction Blood Design Hinges Continuum mechanics Physiology Damage Cardiovascular system Turbulence Flow (dynamics) Adhesion Pressure Stress Multiscale modeling Blood flow Geometry Biomedicine Simulation Computation Dynamics (mechanics) Particulate matter Shear stress Platelets |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|