Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Navdeep, S. Dhillon Jim, C. Cheng Albert, P. Pisano |
| Copyright Year | 2011 |
| Abstract | A novel two-port thermal flux method is implemented for degassing a microscale loop heat pipe (mLHP) and charging it with a working fluid. The mLHP is fabricated on a silicon wafer using standard MEMS micro-fabrication techniques, and capped by a Pyrex wafer, using anodic bonding. For these devices, small volumes and large capillary forces render conventional vacuum pump-based methods quite impractical. Instead, we employ thermally generated pressure gradients to purge non-condensible gases from the device, by vapor convection. Three different, high-temperature-compatible, MEMS device packaging techniques have been studied and implemented, in order to evaluate their effectiveness and reliability. The first approach uses O-rings in a mechanically sealed plastic package. The second approach uses an aluminum double compression fitting assembly for alignment, and soldering for establishing the chip-to-tube interconnects. The third approach uses a high temperature epoxy to hermetically embed the device in a machined plastic base package. Using water as the working fluid, degassing and filling experiments are conducted to verify the effectiveness of the thermal flux method. |
| Starting Page | 963 |
| Ending Page | 971 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791854976 |
| DOI | 10.1115/IMECE2011-64944 |
| Volume Number | Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Epoxy adhesives Water Compression Temperature Microscale devices Aluminum Vapors Semiconductor wafers High temperature Pressure gradient Heat flux Convection Fluids Vacuum Microfabrication Epoxy resins Borosilicate glasses Manufacturing Bonding Microelectromechanical systems Gases Fittings Pumps Heat pipes Seals Packaging Reliability Soldering |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|