Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Brent, A. Odom Mark, J. Miner Carlos, A. Ortiz Jonathan, A. Sherbeck Ravi, S. Prasher Patrick, E. Phelan |
| Copyright Year | 2011 |
| Abstract | This work describes the experimental setup, method, and results of utilizing a micrometer to move an adjustable orifice immediately in front of an array of microchannels. Research by others indicates potential for significant improvement in delaying critical heat flux and increasing heat transfer coefficients when placing an orifice in front of each individual channel of a microchannel array. The experimental setup in this work allows incremental orifice size changes. This ability allows the experimentalist to find which orifice size provides enough pressure drop immediately in front of the channels to reduce oscillations. The design also allows for rapid change of orifice size without having to remove and replace any components of the test setup. Signal analysis methods were used to identify frequency and amplitude of pressure and temperature oscillations. Low mass flux experiments (300 kg m−2 s−1 and 600 kg m−2 s−1 of R134a in a pumped loop) showed reduced channel wall temperatures with smaller orifice sizes. The orifice concept was found to be more effective at reducing oscillations for the higher 600 kg m−2 s−1 flow rate. |
| Starting Page | 793 |
| Ending Page | 801 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791854976 |
| DOI | 10.1115/IMECE2011-62078 |
| Volume Number | Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Design Wall temperature Temperature Two-phase flow Pressure drop Oscillations Signals Critical heat flux Flow (dynamics) Heat transfer coefficients Pressure Microchannels |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|