Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Shida, Shuya Kosukegawa, Hiroyuki Ohta, Makoto |
| Copyright Year | 2011 |
| Abstract | Blood vessel diseases such as ischemic cardiac disease or cerebral aneurysm are life-threatening disorders and as large a cause of death as cancer in many countries. The rupture of a cerebral aneurysm usually causes subarachnoidal hemorrhage the mortality of which is very high. Previous studies have proved that the genesis and growth of aneurysm are related to hemodynamics. Especially, in endovascular therapy for cerebral aneurysms using medical devices such as coils or stents, hemodynamics in an aneurysm are related to thrombosis formation in the aneurysm and to its repair. In vascular research using a biomodel (blood vessel phantom with mechanical properties similar to a human artery) for treating cerebral aneurysm, the working fluid, termed Blood-Mimicking Fluid (BMF), should mimic human blood with respect to viscosity so as to obtain realistic blood flow modeling in in vitro measurements. Moreover, refractive indices of BMF must be adjusted to fit biomodel materials because the materials used for Particle Image Velocimetry, one of the best tools for measurement of flow, have various refractive indices. For simultaneous adjustment of the two parameters, i.e. kinematic viscosity and refractive index, an aqueous mixture of glycerol and sodium iodide has been used in previous research. In this paper, we develop a systematic way to precisely find the two targeted parameters of BMF by showing the measurement values of the refractive index and the viscosity of the two aqueous solutions. The refractive index to light of fluorescent was measured with a critical angle refractometer while temperature of sample was also measured. And a vibration-type viscometer was used to obtain the dynamic viscosity under the same condition as refractive index measurement. These measurements were carried out at room temperature and pressure, respectively. As a result of detailed measurements at various proportions, refractive indices of the aqueous solution of glycerol (Gly. aq.) increase monotonically. On the one hand, the kinematic viscosity of Gly. aq. increases very slightly with its proportion and that of the aqueous solution of sodium iodide (NaI aq.) exhibits unique behavior. The results of combining Gly. aq. and NaI aq. indicate that the mixture has a wide range of kinematic viscosity, including the value of blood (around 3.8 mm2/s), at the targeted refractive index. In conclusion, this mixing method is useful for BMF preparation with the adjustment of refractive index and kinematic viscosity. |
| Starting Page | 313 |
| Ending Page | 321 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791854884 |
| DOI | 10.1115/IMECE2011-64388 |
| Volume Number | Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Temperature Refractive index Flow measurement Aneurysms Modeling Blood Fluids Phantoms Kinematics Stents Medical devices Vibration Rupture Blood vessels Mechanical properties Maintenance Pressure Thrombosis Diseases Blood flow Patient treatment Sodium Particulate matter Hemodynamics Cancer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|