Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Daniel, P. Nicolella Bichon, Barron Francis, W. Loren Travis, D. Eliason |
| Copyright Year | 2011 |
| Abstract | It is widely accepted that the mechanical environment within the knee, or more specifically, increased or altered stresses or strains generated within the cartilage, is a leading cause of knee osteoarthritis (OA). However, a significant unfulfilled technological challenge in musculoskeletal biomechanics and OA research has been determining the dynamic mechanical environment of the cartilage (and other components) resulting from routine and non-routine physical movements. There are two methods of investigating musculoskeletal joint mechanics that have been used to date: 1) forward and inverse multibody dynamic simulations of human movement and 2) detailed quasi-static finite element modeling of individual joints. The overwhelming majority of work has been focused on musculoskeletal multibody dynamics modeling. This method, in combination with experimental motion capture and analysis, has been integral to understanding torques, muscle and ligament forces, and reaction forces occurring at the joint during activities such as walking, running, squatting, and jumping as well as providing key insights into musculoskeletal motor control schemes. However, multibody dynamics simulations do not allow for the detailed continuum level analysis of the mechanical environment of the cartilage and other knee joint structures (meniscus, ligaments, and underlying bone) within the knee during physical activities. This is a critical technology gap that is required to understand the relationship between functional or injurious loading of the knee and cartilage degradation. We have developed a detailed neuromuscularly activated dynamic finite element model of the human lower body and have used this model to simultaneously determine the dynamic muscle forces, joint kinematics, contact forces, and detailed (e.g., continuum) stresses and strains within the knee (cartilage, meniscus, ligaments, and bone) during several increasingly complex neuromuscularly controlled and actuated lower limb movements. Motion at each joint is controlled explicitly via deformable cartilage-to-cartilage surface contact at each articular surface (rather than idealized as simple revolute or ball and socket joints). The major muscles activating the lower limb are explicitly modeled with Hill-type active force generating springs using anatomical muscle insertion points and geometric wrapping. Muscle activation dynamics were determined via a constrained optimization scheme to minimize muscle activation energy. Time histories of the mechanical environment of all soft tissues within the knee are determined for a simulated leg extension. |
| Starting Page | 517 |
| Ending Page | 523 |
| Page Count | 7 |
| File Format | |
| ISBN | 9780791854884 |
| DOI | 10.1115/IMECE2011-63940 |
| Volume Number | Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Knee Motor controls Joint mechanics Modeling Stress Optimization Soft tissues Cartilage Musculoskeletal system Finite element model Simulation Dynamics (mechanics) Kinematics Musculoskeletal soft tissue mechanics Multibody dynamics Muscle Bone Engineering simulation Finite element analysis Osteoarthritis Springs Dynamic modeling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|