Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Babakhani, A. Lavaei, J. Doyle, J.C. Hajimiri, A. |
| Copyright Year | 2010 |
| Description | Author affiliation: California Institute of Technology (Babakhani, A.; Lavaei, J.; Doyle, J.C.; Hajimiri, A.) |
| Abstract | During the last decade, the unprecedented increase in the affordable computational power has strongly supported the development of optimization techniques for designing antennas. Among these techniques, genetic algorithm [1] and particle swarm optimization [2] could be mentioned. Most of these techniques use physical dimensions of an antenna as the optimization variables, and require solving Maxwell's equations (numerically) at each optimization step. They are usually slow, unable to handle a large number of variables, and incapable of finding the globally optimum solutions. In this paper, we are proposing an antenna optimization technique that is orders of magnitude faster than the conventional schemes, can handle thousands of variables, and finds the globally optimum solutions for a broad range of antenna optimization problems. In the proposed scheme, termination impedances embedded on an antenna structure are used as the optimization variables. This is particularly useful in designing on-chip smart antennas, where thousands of transistors and variable passive elements can be employed to reconfigure an antenna. By varying these parasitic impedances, an antenna can vary its gain, band-width, pattern, and efficiency. The goal of this paper is to provide a systematic, numerically efficient approach for finding globally optimum solutions in designing smart antennas. |
| Starting Page | 1 |
| Ending Page | 4 |
| File Size | 264366 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424449675 |
| ISSN | 15223965 |
| DOI | 10.1109/APS.2010.5561993 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-07-11 |
| Publisher Place | Canada |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Optimization Dipole antennas Metals Linear matrix inequalities Transmitting antennas Mathematical model |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|