Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Tham, K.K. Hinata, S. Saito, S. |
| Copyright Year | 1965 |
| Abstract | The effect of topological bumpy surface underlayer on compositionally modulated atomic layer stacking in high uniaxial magnetocrystalline anisotropy (Ku) hcp Co80Pt20 film with (00.2) crystallographic texture orientation was investigated. In this paper, the following has been discussed. Concerning preparation of underlayer with various morphologies, an annealing process prior to the deposition of Co80Pt20 film, and introduction of a metal-oxide buffer layer are effective to obtain underlayers with surface roughness ranging from ~0.4 to 2 nm and grain size ranging from ~6.7 to 12.5 nm. To realize a compositionally modulated atomic layer stacking structure, which is confirmed by the high angle annular dark field detector scanning transmission electron microscopy observation, an underlayer with surface roughness less than ~1 nm and/or grain size larger than ~8 nm is required. The compositional modulation shows the same normal direction as substrate normal and the c-axis direction of the hcp grain. To reach Ku of ~1.7 × 107 erg/cm3, surface roughness reduction to ~0.5 nm and grain size increase to ~12 nm are needed. |
| Sponsorship | IEEE Magnetics Society |
| Starting Page | 1 |
| Ending Page | 4 |
| Page Count | 4 |
| File Size | 3086473 |
| File Format | |
| ISSN | 00189464 |
| Volume Number | 51 |
| Issue Number | 11 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Rough surfaces Surface roughness Surface morphology Surface topography Films Surface treatment Grain size high K u CoPt film Perpendicular magnetic recording compositionally modulated atomic layer stacking, perpendicular magnetic recording Compositionally modulated atomic layer stacking CoPt film high $K_{u}$ |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|