Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | McCaule, Don Webb, Clair Nelson, Donald W. Pantuso, Daniel Rupley, Jeff Morrow, Pat DeVale, John Brekelbaum, Ned Shen, John Black, Bryan Annavaram, Murali Reed, Paul Jiang, Lei Loh, Gabriel H. Shankar, Sadasivan |
| Abstract | 3D die stacking is an exciting new technology that increases transistor density by vertically integrating two or more die with a dense, high-speed interface. The result of 3D die stacking is a significant reduction of interconnect both within a die and across dies in a system. For instance, blocks within a microprocessor can be placed vertically on multiple die to reduce block to block wire distance, latency, and power. Disparate Si technologies can also be combined in a 3D die stack, such as DRAM stacked on a CPU, resulting in lower power higher BW and lower latency interfaces, without concern for technology integration into a single process flow. 3D has the potential to change processor design constraints by providing substantial power and performance benefits. Despite the promising advantages of 3D, there is significant concern for thermal impact. In this research, we study the performance advantages and thermal challenges of two forms of die stacking: Stacking a large DRAM or SRAM cache on a microprocessor and dividing a traditional microarchitecture between two die in a stack Results: It is shown that a 32MB 3D stacked DRAM cache can reduce the cycles per memory access of a twothreaded RMS benchmark on average by 13% and as much as 55% while increasing the peak temperature by a negligible 0.08ºC. Off-die BW and power are also reduced by 66% on average. It is also shown that a 3D floorplan of a high performance microprocessor can simultaneously reduce power 15% and increase performance 15% with a small 14ºC increase in peak temperature. Voltage scaling can reach neutral thermals with a simultaneous 34% power reduction and 8% performance improvement. |
| Starting Page | 469 |
| Ending Page | 479 |
| Page Count | 11 |
| File Format | |
| ISBN | 0769527329 |
| ISSN | 10724451 |
| DOI | 10.1109/MICRO.2006.18 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2006-12-09 |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|