Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Prieto-Simón, B. Bandaru, N. M. Saint, C. Voelcker, N. H. |
| Description | Author Affiliation: Prieto-Simón B ( Mawson Institute, University of South Australia, Australia. Electronic address: Beatriz.prietosimon@unisa.edu.au.); Bandaru NM ( School of Chemical and Physical Sciences, Flinders University, Australia.); Saint C ( SA Water Centre for Water Management and Re-use, University of South Australia, Australia.); Voelcker NH ( Mawson Institute, University of South Australia, Australia. Electronic address: nico.voelcker@unisa.edu.au.) |
| Abstract | The use of carbon nanotubes (CNTs) as building blocks in the design of electrochemical biosensors has been attracting attention over the last few years, mainly due to their high electrical conductivity and large surface area. Here, we present two approaches based on tailored single-walled CNTs (SWCNTs) architectures to develop immunosensors for the bacteriophage MS2, a virus often detected in sewage-impacted water supplies. In the first approach, SWCNTs were used in the bottom-up design of sensors as antibody immobilization support. Carboxy-functionalised SWCNTs were covalently tethered onto gold electrodes via carbodiimide coupling to cysteamine-modified gold electrodes. These SWCNTs were hydrazide functionalized by electrochemical grafting of diazonium salts. Site-oriented immobilization of antibodies was then carried out through hydrazone bond formation. Results showed microarray electrode behavior, greatly improving the signal-to-noise ratio. Excellent sensitivity and limit of detection (9.3 pfu/mL and 9.8 pfu/mL in buffer and in river water, respectively) were achieved, due to the combination of the SWCNTs' ability to promote electron transfer reactions with electroactive species at low overpotentials and their high surface-to-volume ratio providing a favorable environment to immobilize biomolecules. In the second approach, SWCNTs were decorated with iron oxide nanoparticles. Diazonium salts were electrochemically grafted on iron-oxide-nanoparticle-decorated SWCNTs to functionalize them with hydrazide groups that facilitate site-directed immobilization of antibodies via hydrazone coupling. These magnetic immunocarriers facilitated MS2 separation and concentration on an electrode surface. This approach minimized non-specific adsorptions and matrix effects and allowed low limits of detection (12 pfu/mL and 39 pfu/mL in buffer and in river water, respectively) that could be further decreased by incubating the magnetic immunocarriers with larger volumes of sample. Significantly, both approaches permitted the detection of MS2 to levels regularly encountered in sewage-impacted environments. |
| ISSN | 09565663 |
| Volume Number | 67 |
| e-ISSN | 18734235 |
| Journal | Biosensors and Bioelectronics |
| Language | English |
| Publisher | Elsevier |
| Publisher Date | 2015-05-15 |
| Publisher Place | Great Britain (UK) |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Biosensing Techniques Immunoassay Levivirus Isolation & Purification Water Microbiology Antibodies Chemistry Immunology Electric Conductivity Ferric Compounds Gold Hydrazones Nanotubes, Carbon Journal Article Research Support, Non-u.s. Gov't Discipline Biotechnology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Medicine Biophysics Biomedical Engineering Biotechnology Electrochemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|