Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Esfandiari, M. Araabi, B.N. Fatehi, A. Vali, A. |
Copyright Year | 2009 |
Description | Author affiliation: University of Tehran (Araabi, B.N.) || KNT University (Fatehi, A.) || Malek ashtar University (Esfandiari, M.; Vali, A.) |
Abstract | In this paper we present a systematic procedure to design robust fuzzy controller for exponentially stabilizing affine nonlinear systems, based on their TS fuzzy model. For robust design we consider modeling error in TS model and as well as perturbation in the original nonlinear system. Minimization of cost function along with mapping closed loop poles to desired poles are considered simultaneously in controller design. As a result, the desired specified performance in transient response can be achieved. Piecewise Discontinues Lyapunov Functions (PDLF) are utilized in our proposed method. To avoid difficulties in boundary conditions in PDLF we opt to design an online controller and check the regions and boundaries continuously. The constraints required to guarantee the exponential stability of the original nonlinear systems and optimal controller design with guaranteeing desired performance are presented in the LMI form. The y well developed. The power of these methods is that searching Lyapunov function and feedback gain can be stated as a convex optimization problem and the task of finding the common Lyapunov function can be readily be formulated into an LMI problem. However this approach is too conservative and there are lots of stable systems that we can not find a common positive definite Lyapunov function for all subsystems. Piecewise quadratic Lyapunov function approach [7],[8] have been considered to avoid conservativeness of quadratic Lyapunov function approaches [4]-[6]. Piecewise quadratic Lyapunov function (PLF) are divided in two categories, one is continuous (PCLF) in boundaries and one of them is discontinuous (PDLF) on boundaries. It was shown that PDLF in contrast with PCLF results in fewer LMIs [9]. To apply all mentioned methods, the system must be presented by a Takagi-Sugeno model and as it was demonstrated TS modeling enables us to deal with high order complicated nonlinear systems. Most of works so far have used PCLF for controller design and stability analysis, but PDLF have been used mainly for stability analysis and there are no reports about using PDLF for controller design. The main reason is difficulties in boundary conditions. effectiveness and applicability of the proposed method is examined on an inverted pendulum system. |
Starting Page | 1388 |
Ending Page | 1393 |
File Size | 316237 |
Page Count | 6 |
File Format | |
ISBN | 9781424447060 |
DOI | 10.1109/ICCA.2009.5410364 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2009-12-09 |
Publisher Place | New Zealand |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Robust control Fuzzy control Fuzzy systems Optimal control Nonlinear control systems Control systems Nonlinear systems Lyapunov method Boundary conditions Stability analysis Piecewise Discontinues Lyapunov Functions stability Takagi-Sugeno fuzzy controller State feedback |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|