Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Hanson, K. Robson, C. |
| Copyright Year | 1963 |
| Abstract | In the extreme environment of Antarctica at the South Pole, the IceCube experiment, the world's first kilometer-scale neutrino telescope, collects cosmic ray events. IceCube consists of over 5000 digital optical sensor modules (DOMs) deployed on 86 instrumentation lines each extending 2.5 km deep in the antarctic ice. The array of optical modules monitors the Cherenkov light emitted by passing radiation, which, when digitized and timestamped to nanosecond precision, is used as input to sophisticated reconstruction algorithms that determine the direction, energy, and type of the incident cosmic ray event. In order to achieve this goal, the IceCube data acquisition system merges the digital data streams from each photodetector into a single time-ordered list which is presented to online triggers that determine, in realtime, whether or not a given pattern of hits is noise or signal. At the present time, the data provided to the triggers is limited by the performance of sorting and merging algorithms: the 500 Hz raw data rate from each sensor (2.5 MHz array aggregate rate) is beyond the capability of the central sort and merge. The current solution adopted by the IceCube detector is to impose a hardware-based pretrigger coincidence on hits emanating from the DOMs which reduces the rate by a factor of 20. While this pretrigger coincidence has negligible impact on the detector sensitivity for the principal goal of high-energy neutrinos from galactic or extragalactic sources, other low-energy physics searches are affected. This presentation details work done to develop and implement a system, TESS, which is capable of merging the full raw data stream being produced by the IceCube DOMs. TESS is designed as a pipelined architecture with three major modules: server, selector and the client glued together by circular buffers. The three modules runs in only three threads and since the architecture is self synchronizing and uses no data copying maximum performance can be achieved for global sorting of payloads. The TESS sorting architecture was originally designed to provide a globally sorted data stream for triggers targeting low-energy events from annihilation of hypothesized dark-matter particles, however its utility is generalizable to any IceCube trigger which requires inspection of the full data stream. The IceCube online supernova detection system is a notable example. Moreover, the algorithm is generic to any system involving multiple, independently sorted data streams which must be merged into a single sorted data stream. |
| Sponsorship | IEEE Nuclear and Plasma Sciences Society Computer Applications in Nuclear and Plasma Sciences (CANPS) Lawrence Berkeley Lab. Lawrence Livermore Nat. Lab. APS College of William and Mary Continuous Electron Beam Accelerator Facility NASA Defence Nuclear Agency Sandia National Laboratories Jet Propulsion Laboratory Brookhaven Nat. Lab. Lawrence Livermore Nat. Lab IEEE/NPPS Radiat. Effects Committee Defence Nuclear Agency/DoD Sandia National Laboratories/DOE Jet Propulsion Laboratory/NASA Phillips Lab./DoD |
| Starting Page | 3742 |
| Ending Page | 3745 |
| Page Count | 4 |
| File Size | 501759 |
| File Format | |
| ISSN | 00189499 |
| Volume Number | 60 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Data acquisition Sorting Servers Engines Payloads Arrays trigger DAQ data acquisition distributed systems high performance computing high speed processing icecube parallel architectures sorting TESS track engine |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nuclear and High Energy Physics Electrical and Electronic Engineering Nuclear Energy and Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|