Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Muntimadugu, Kirthi Krishna Palem, Krishna V. Lingamneni, Avinash Piguet, Christian Enz, Christian Karp, Richard M. |
| Abstract | Owing to a growing desire to reduce energy consumption and widely anticipated hurdles to the continued technology scaling promised by Moore's law, techniques and technologies such as inexact circuits and probabilistic CMOS (PCMOS) have gained prominence. These radical approaches trade accuracy at the hardware level for significant gains in energy consumption, area, and speed. While holding great promise, their ability to influence the broader milieu of computing is limited due to two shortcomings. First, they were mostly based on ad-hoc hand designs and did not consider algorithmically well-characterized automated design methodologies. Also, existing design approaches were limited to particular layers of abstraction such as physical, architectural and algorithmic or more broadly software. However, it is well-known that significant gains can be achieved by optimizing across the layers. To respond to this need, in this paper, we present an algorithmically well-founded cross-layer co-design framework (CCF) for automatically designing inexact hardware in the form of datapath elements. Specifically adders and multipliers, and show that significant associated gains can be achieved in terms of energy, area, and delay or speed. Our algorithms can achieve these gains with adding any additional hardware overhead. The proposed CCF framework embodies a symbiotic relationship between architecture and logic-layer design through the technique of probabilistic pruning combined with the novel confined voltage scaling technique introduced in this paper, applied at the physical layer. A second drawback of the state of the art with inexact design is the lack of physical evidence established through measuring fabricated ICs that the gains and other benefits that can be achieved are valid. Again, in this paper, we have addressed this shortcoming by using CCF to fabricate a prototype chip implementing inexact data-path elements; a range of 64-bit integer adders whose outputs can be erroneous. Through physical measurements of our prototype chip wherein the inexact adders admit expected relative error magnitudes of 10% or less, we have found that cumulative gains over comparable and fully accurate chips, quantified through the area-delay-energy product, can be a multiplicative factor of 15 or more. As evidence of the utility of these results, we demonstrate that despite admitting error while achieving gains, images processed using the FFT algorithm implemented using our inexact adders are visually discernible. |
| Starting Page | 3 |
| Ending Page | 12 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450312158 |
| DOI | 10.1145/2212908.2212912 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-05-15 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Inexact circuit design Cross-layer co-design framework Energy-accuracy tradeoff Probabilistic pruning Average case analysis Confined voltage scaling Error-resilient systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|