Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | De, Anindya Servedio, Rocco A. |
| Abstract | We give a deterministic algorithm for approximately counting satisfying assignments of a degree-d polynomial threshold function (PTF). Given a degree-d input polynomial p(x) over $R^{n}$ and a parameter ε > 0, our algorithm approximates Pr [EQUATION] to within an additive ±ε in time $O_{d,ε}(1)$ · $poly(n^{d}).$ (Since it is NP-hard to determine whether the above probability is nonzero, any sort of efficient multiplicative approximation is almost certainly impossible even for randomized algorithms.) Note that the running time of our algorithm (as a function of $n^{d},$ the number of coefficients of a degree-d PTF) is a fixed polynomial. The fastest previous algorithm for this problem [Kan12b], based on constructions of unconditional pseudorandom generators for degree-d PTFs, runs in time [EQUATION] for all c > 0. The key novel technical contributions of this work are • A new multivariate central limit theorem, proved using tools from Malliavin calculus and Stein's Method. This new CLT shows that any collection of Gaussian polynomials with small eigenvalues must have a joint distribution which is very close to a multidimensional Gaussian distribution. • A new decomposition of low-degree multilinear polynomials over Gaussian inputs. Roughly speaking we show that (up to some small error) any such polynomial can be decomposed into a bounded number of multilinear polynomials all of which have extremely small eigenvalues. We use these new ingredients to give a deterministic algorithm for a Gaussian-space version of the approximate counting problem, and then employ standard techniques for working with low-degree PTFs (invariance principles and regularity lemmas) to reduce the original approximate counting problem over the Boolean hypercube to the Gaussian version. As an application of our result, we give the first deterministic fixed-parameter tractable algorithm for the following moment approximation problem: given a degree-d polynomial $p(x_{1},.,$ $x_{n})$ over {--1, $1\}^{n},$ a positive integer k and an error parameter ε, output a (1±ε)-multiplicatively accurate estimate to [EQUATION]. Our algorithm runs in time $O_{d,ε,k}(1)$ · $poly(n_{d}).$ |
| Starting Page | 832 |
| Ending Page | 841 |
| Page Count | 10 |
| File Format | PDF MP4 |
| ISBN | 9781450327107 |
| DOI | 10.1145/2591796.2591800 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-05-31 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Polynomial threshold function Derandomization Approximate counting |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|