Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Munagala, Kamesh Kulkarni, Janardhan Im, Sungjin |
| Abstract | We introduce and study a general scheduling problem that we term the Packing Scheduling problem (PSP). In this problem, jobs can have different arrival times and sizes; a scheduler can process job j at rate $x_{j},$ subject to arbitrary packing constraints over the set of rates (x) of the outstanding jobs. The PSP framework captures a variety of scheduling problems, including the classical problems of unrelated machines scheduling, broadcast scheduling, and scheduling jobs of different parallelizability. It also captures scheduling constraints arising in diverse modern environments ranging from individual computer architectures to data centers. More concretely, PSP models multidimensional resource requirements and parallelizability, as well as network bandwidth requirements found in data center scheduling. In this paper, we design non-clairvoyant online algorithms for PSP and its special cases -- in this setting, the scheduler is unaware of the sizes of jobs. Our results are summarized as follows. • For minimizing total weighted completion time, we show a O(1)-competitive algorithm. Surprisingly, we achieve this result by applying the well-known Proportional Fairness algorithm (PF) to perform allocations each time instant. Though PF has been extensively studied in the context of maximizing fairness in resource allocation, we present the first analysis in adversarial and general settings for optimizing job latency. Our result is also the first O(1)-competitive algorithm for weighted completion time for several classical non-clairvoyant scheduling problems. •For minimizing total weighted flow time, for any constant ε > 0, any $O(n^{1---ε})-competitive$ algorithm requires extra speed (resource augmentation) compared to the offline optimum. We show that PF is a O(log n)-speed O(log n)-competitive non-clairvoyant algorithm, where n is the total number of jobs. We further show that there is an instance of PSP for which no non-clairvoyant algorithm can be $O(n^{1---ε})-competitive$ with o(√log n) speed. •For the classical problem of minimizing total flow time for unrelated machines in the non-clairvoyant setting, we present the first online algorithm which is scalable ((1 + ε)-speed O(1)-competitive for any constant ε > 0). No non-trivial results were known for this setting, and the previous scalable algorithm could handle only related machines. We develop new algorithmic techniques to handle the unrelated machines setting that build on a new single machine scheduling policy. Since unrelated machine scheduling is a special case of PSP, when contrasted with the lower bound for PSP, our result also shows that PSP is significantly harder than perhaps the most general classical scheduling settings. Our results for PSP show that instantaneous fair scheduling algorithms can also be effective tools for minimizing the overall job latency, even when the scheduling decisions are non-clairvoyant and constrained by general packing constraints. |
| Starting Page | 313 |
| Ending Page | 322 |
| Page Count | 10 |
| File Format | PDF MP4 |
| ISBN | 9781450327107 |
| DOI | 10.1145/2591796.2591814 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-05-31 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Unrelated machines Proportional fairness Online scheduling Equilibria Polyhedral constraints Flow time Non-clairvoyance |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|