Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kumar, Mrinal Saraf, Shubhangi |
| Abstract | In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of depth reduction developed in the works of Agrawal and Vinay[1], Koiran [11] and Tavenas [16], and the use of the shifted partial derivative complexity measure developed in the works of Kayal [9] and Gupta et al [5]. These results inspired a flurry of other beautiful results and strong lower bounds for various classes of arithmetic circuits, in particular a recent work of Kayal et al [10] showing superpolynomial lower bounds for regular arithmetic formulas via an improved depth reduction for these formulas. It was left as an intriguing question if these methods could prove superpolynomial lower bounds for general (homogeneous) arithmetic formulas, and if so this would indeed be a breakthrough in arithmetic circuit complexity. In this paper we study the power and limitations of depth reduction and shifted partial derivatives for arithmetic formulas. We do it via studying the class of depth 4 homogeneous arithmetic circuits. We show: (1) the first superpolynomial lower bounds for the class of homogeneous depth 4 circuits with top fan-in o(log n). The core of our result is to show improved depth reduction for these circuits. This class of circuits has received much attention for the problem of polynomial identity testing. We give the first nontrivial lower bounds for these circuits for any top fan-in ≥ 2. (2) We show that improved depth reduction is not possible when the top fan-in is Ω(log n). In particular this shows that the depth reduction procedure of Koiran and Tavenas [11, 16] cannot be improved even for homogeneous formulas, thus strengthening the results of Fournier et al [3] who showed that depth reduction is tight for circuits, and answering some of the main open questions of [10, 3]. Our results in particular suggest that the method of improved depth reduction and shifted partial derivatives may not be powerful enough to prove superpolynomial lower bounds for (even homogeneous) arithmetic formulas. |
| Starting Page | 136 |
| Ending Page | 145 |
| Page Count | 10 |
| File Format | PDF MP4 |
| ISBN | 9781450327107 |
| DOI | 10.1145/2591796.2591827 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-05-31 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Lower bounds Arithmetic formula Depth reduction Shifted partial derivatives |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|